• 제목/요약/키워드: Gas Dispersion

Search Result 406, Processing Time 0.027 seconds

An Examination on the Dispersion Characteristics of Boil-off Gas in Vent Mast Exit of Membrane Type LNG Carriers (멤브레인형 LNG선박 화물탱크 벤트 마스트 출구에서의 BOG 확산 특성에 관한 연구)

  • Kang, Ho-Keun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.2
    • /
    • pp.225-231
    • /
    • 2013
  • Liquefied gas carriers generally transport cargoes of flammable or toxic nature. Since these cargoes may cause an explosion, fire or human casualty, the accommodation spaces, service spaces and control stations of liquefied gas carriers should be so located as to avoid ingress of gas. For this reason, the paragraph 8.2.9 of IGC Code in IMO requires that the height of vent exits should be not less than B/3 or 6 m whichever is greater, above the weather deck and 6 m above the working area and the fore and aft gangway to prevent any concentration of cargo vapor or gas at such spaces. Besides as known, the LNG market has been growing continually, which has led to LNG carriers becoming larger in size. Under this trend, the height of a vent will have to be raised considerably since the height of a vent pipe is generally decided by a breadth of a corresponding vessel. Accordingly, we have initiated an examination to find an alternative method which can be used to determine the safe height of vent masts, instead of the current rule requirement. This paper describes the dispersion characteristics of boil-off gas spouted from a vent mast under cargo tank cool-down conditions in the membrane type LNG carriers.

Investigation of Turbulent Analysis Methods for CFD of Gas Dispersion Around a Building (건물주위의 가스 확산사고에 대한 CFD 난류 해석기법 검토)

  • Ko, Min Wook;Oh, Chang Bo;Han, Youn Shik;Do, Kyu Hyung
    • Fire Science and Engineering
    • /
    • v.29 no.5
    • /
    • pp.42-50
    • /
    • 2015
  • Three simulation approaches for turbulence were applied for the computation of propane dispersion in a simplified real-scale urban area with one building:, Large Eddy Simulation (LES), Detached Eddy Simulation (DES), and Unsteady Reynolds Averaged Navier-Stokes (RANS). The computations were performed using FLUENT 14, and the grid system was made with ICEM-CFD. The propane distribution depended on the prediction performance of the three simulation approaches for the eddy structure around the building. LES and DES showed relatively similar results for the eddy structure and propane distribution, while the RANS prediction of the propane distribution was unrealistic. RANS was found to be inappropriate for computation of the gas dispersion process due to poor prediction performance for the unsteady turbulence. Considering the computational results and cost, DES is believed to be the optimal choice for computation of the gas dispersion in a real-scale space.

Effects of Thermal Dispersion Damage on the Pyrolysis and Reactor Relarionship Using Comutational Fluids Dynamics (전산유체역학을 활용한 폐플라스틱열분해 반응기의 기체분산판에 대한 유동해석)

  • Jongil, Han;SungSoo, Park;InJea, Kim;Kwangho, Na
    • New & Renewable Energy
    • /
    • v.19 no.4
    • /
    • pp.53-60
    • /
    • 2023
  • The Computational Fluid Dynamics (CFD) model is a method of studying the flow phenomenon of fluid using a computer and finding partial differential equations that dominate processes such as heat dispersion through numerical analysis. Through CFD, a lot of information about flow disorders such as speed, pressure, density, and concentration can be obtained, and it is used in various fields from energy and aircraft design to weather prediction and environmental modeling. The simulation used for fluid analysis in this study utilized Gexcon's (FLACS) CODE, such as Norway, through overseas journals, for the accuracy of the analysis results through many experiments. It was analyzed that a technology for treating two or more catalysts with physical properties under low-temperature atmospheric pressure conditions could not be found in the prior art. Therefore, it would be desirable to establish a continuous plan by reinforcing data that can prove the effectiveness of producing efficient synthetic oil (renewable oil) through the application that pyrolysis under low-temperature and atmospheric pressure conditions.

A Study on the Dispersion of Fuel Particles in the Homogeneous Turbulent Flow Field (균일 난류 유동장내에서 연료입자의 퍼짐에 관한 연구)

  • 김덕줄;최연우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.5
    • /
    • pp.1330-1337
    • /
    • 1994
  • This study is to predict the lateral dispersion of the particles with time in a vertical pipe. Particle is released downward and located in the center of a pipe through which stationary, homogeneous turbulent air is flowing. We assume that gas turbulence velocities have a Gaussian probability density distribution and the presence of particle is not to alter turbulent structures. Particle trajectory is computed by numerically integrating the particle Lagrangian equation of motion, with a random sampling to determine the fluctuating air velocity experienced by each particle, which considered inertia effect and crossing-trajectories effect. The result shows characterestics of particle dispersion according to flow field condition and droplet size by using the parameters and scales, which expressed characterestics of flow field and particle. Predictions agree reasonably with experimental data.

Determination of Liquid Rocket Engine System Test Range Considering Performance Dispersions (성능 분산을 고려한 액체로켓엔진의 시스템 시험 영역 설정)

  • Nam, Chang-Ho;Kim, Seung-Han;Seol, Woo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.165-169
    • /
    • 2007
  • Qualification test range for Lox/Kerosene gas generator cyle liquid rocket engine was determined by considering engine dispersion and flight inlet conditions. With various pump characteristics, the operation range of components and system was investigated through dispersion analysis. The variation of engine performance shows opposite trends in calibration and dispersion.

  • PDF

Dispersion of Alloy 625 Nanoparticles in Ethanol

  • Lee, Eun-Hee;Lee, Min-Ku;Rhee, Chang-Kyu
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.673-674
    • /
    • 2006
  • The influence of several experimental parameters on the formation of stable Alloy 625 nanoparticles dispersion in ethanol was investigated. Several analyzing methods were applied, like transmission profiles measured by Turbiscan, transmission electron microscopy, X-ray diffraction, gas chromatography, and particle size analyzer. The correlation among the increase of particle sizes, caused by nanoparticle coalescence and collision, concentration of dispersant and time was presented and discussed. The optimum conditions for the formation of stable dispersion are evaluated.

  • PDF

Development of a Dispersion Analysis Program for the Liquid Rocket Engine and its Application (액체로켓 엔진 성능 분산해석 프로그램의 개발 및 응용)

  • Park, Soon-Young;Nam, Chang-Ho;Seol, Woo-Seok
    • Aerospace Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.63-69
    • /
    • 2011
  • In this study, we developed a dispersion analysis program of the gas-generator cycle liquid propellant rocket engine by expanding the mode analysis software(GEMAT). The performance dispersions of an engine that are arisen from the internal dispersion factors of engine's sub-components were formulated and solved to find the effects of each dispersion factor. We were also able to present the calculation method to find the required pressure margin for the compensation of those dispersion to satisfy the required performances of engine. Using this method, we could propose a novel procedure of compensating during the ground firing test which would induce the performance improvement by lessening the pumps discharge pressures or augmenting the combustion chamber pressure.

Consequence Analysis for Release Scenario of Buried High Pressure Natural Gas Pipeline (지하매설 도시가스배관의 누출시나리오에 따른 사고피해영향분석)

  • Kim, Jin Hyung;Ko, Byung Seok;Yang, Jae Mo;Ko, Sang-Wook;Ko, Jae Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.3
    • /
    • pp.67-74
    • /
    • 2014
  • Buried natural gas pipelines in densely populated urban areas have serious hazards of property damages and casualties generated by release, dispersion, fire and explosion of gas caused by outside or inside failures. So as to prevent any accident in advance, managers implement danger management based on quantitative risk analysis. In order to evaluate quantitative risk about buried natural gas pipelines, we need calculation for radiant heat and pressure wave caused by calculation for release rate of chemical material, dispersion analysis, fire or explosion modeling through consequence analysis in priority, in this paper, we carry out calculation for release rate of pressured natural gas, radiant heat of fireball based in accident scenario of actual "San Bruno" buried high pressured pipelines through models which CCPS, TNO provide and compare with an actual damage result.

Optimization of Gas Detector Location by Analysis of the Dispersion Model of Hazardous Chemicals (유해화학물질의 확산 모델 분석을 통한 가스감지기 위치 최적화)

  • Jeong, Taejun;Lim, Dong-Hui;Kim, Min-Seop;Lee, Jae-Geol;Yoo, Byung Tae;Ko, Jae Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.2
    • /
    • pp.39-48
    • /
    • 2022
  • The domestic gas detector installation standards applied to gas detectors, which are one of the facilities that can prevent accidents such as fire, explosion, and leakage that can cause serious industrial accidents, do not take into account the behavioral characteristics of hazardous chemicals in the atmosphere. It can be seen that the technical basis is insufficient because the standard is applied. Therefore, in this study, the size of the leak hole for each facility mainly used in chemical plants and the diffusion distance according to the concentration of interest of hazardous chemicals were analyzed, and based on this, the optimal installation distance for gas detectors for each material was suggested. Using the method presented in this study, more economical and effective gas detector installation can be expected, and furthermore, it can be expected to help prevent serious industrial accidents.

Analysis of Hydrogen Accident in Korea (국내 수소사고사례 분석)

  • Jo, Young-Do;Tak, Song-Su;Choi, Kyoung-Suhk;Lee, Jong Rark;Park, Kyo-Shik
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.1
    • /
    • pp.82-87
    • /
    • 2004
  • Hydrogen is considered to be the most important future energy carrier in many applications reducing greenhouse gas emissions significantly. To be applicable as energy carrier the safety issues associated with hydrogen applications needs to be investigated and fully understood. In order to analyze the risks associated with hydrogen applications, accidents associated with hydrogen in Korea from 1963 to 2002 have been analysed in this work. From analysis of accidents, we propose the necessity of research on hydrogen releases, dispersion in air, and explosion due to high hazardous of hydrogen.