• Title/Summary/Keyword: Gas Damping

Search Result 137, Processing Time 0.026 seconds

Three Axis Disk Spring Damper Containing Wedge System (웻지를 이용한 3축 방향 디스크 스프링 댐퍼에 관한 연구)

  • Choi, Myung-Jin;Jeong, Ji-Won
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.6
    • /
    • pp.1-8
    • /
    • 2009
  • This study pertains to damping device to reduce vibrational responses and shocks in multi-directions. To enhance the capability of disk spring damper which works for vertical vibration and shock, a multi-directional damper is proposed, which contains wedge system as well as disk spring stack. Wedge system converts horizontal load into vertical load. A mathematical model is proposed and investigated for the nonlinear behaviors of the disc spring damper containing wedge system. The results accord with the experimental results. Equivalent viscous damping in vertical and horizontal directions are found based upon energy dissipated.

  • PDF

A Study on Partial-Load Performance Experiment & Analysis for Dynamic Transient Effect of Free Shaft Gas Turbine Engine (분리 축 가스터빈엔진의 동역학적 천이효과에 의한 부분부하성능 시험 및 해석에 관한 연구)

  • 김경두;이원중;양수석
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.183-188
    • /
    • 2003
  • The present work was conducted to build a propulsion system for an airship. For this purpose, free shaft gas-turbine was modified to produce electrical power. he experiments were carried out to analyze the driving rotor condition at various power shaft loads. From this analysis, an appropriate damping device was required, and the changeable inertial moment from the fly-wheel was applied. Without the appropriate damping device, instability was found, and it was resulted as power loss. Also the amount of inertial moment was certified by the performance of dynamic transient effects from the engine test results. Knowledge gained from this research could benefit the propulsion and power conversion community by increasing the better understanding of shaft loads and inertial effects.

  • PDF

Studies on Coupled Vibrations of Diesel Engine Propulsion Shafting(2nd Report: Analyzing of Forced Vibration with Damping) (디젤기관 추진축계의 연성진공에 관한 연구(제2보 : 강제 감쇠 연성진동해석))

  • 전효중;이돈출;김의간;김정렬
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.3
    • /
    • pp.563-572
    • /
    • 2001
  • With the results of calculation for natural frequencies the reponses of forced coupled vibration of propulsion shafting system were investigated by the modal analysis method. For the forced vibration response analysis, the axial exciting forces, the axial damper/detuner, propeller exciting forces and damping coefficients were extensively considered. As the conclusion of this study, some items are cleared as follows.-The torsional vibration amplitudes are not influenced by the radial excitation forces of the crank shaft. -The axial vibration amplitudes are influenced by the tangential exciting forces as well as the radial exciting forces of the crank shaft. The increase of the amplitudes is observed in the speed range at the neighbourhood of any torsional critical speed. 1The closer the torsional and axial critical speed. the larger coupling effect becomes. -The axial exciting force of propeller is relatively strong comparing with axial exciting forces of cylinder gas pressure and oscillating inertia of reciprocating mechanism. Therefore, the following conclusions are obtained. -Torsional vibration calculation with the classical one dimensional model is still valid. -The influence of torsional excitation at each crank upon the axial vibration is improtant. especially in the neighbourhood of a torsional critical speed. That means that the calculation of axial vibration with the classical one dimensional model is inaccurate in most of cases.

  • PDF

Vibration Control of Flexible Structures by using Conveying Fluid Pipe (유동유체가 흐르는 파이프에 의한 유연 구조물의 진동제어)

  • 류시웅;김건희;공창덕;오경원
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.2
    • /
    • pp.25-31
    • /
    • 2004
  • This paper describes a new vibration-suppression technique for flexible cantilevered structures by using a pipe containing an internal flow. The stability and dynamic response are analyzed based on the finite element method. The flutter limit and optimum stabilizing fluid velocity are determined in root locus diagrams. The impulse responses of the system are studied by the mode superposition method to observe the damping rate of the motion. The stabilizing effect of an internal flow is demonstrated by impulse responses of the structures with and without an material damping. It is found that the response of the pipe with flow of liquid has a larger effect of, stabilizing than that with flow of gas.

Studies on Coupled Vibrations of Diesel Engine Propulsion Shafting (2nd Report : Analyzing of Forced Vibration with Damping) (디젤기관 추진축계의 연성진동에 관한 연구 (제2보: 강제 감쇠 연성진동 해석))

  • 이돈출;김의간;전효중
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.99-107
    • /
    • 2000
  • With the results of calculation for natural frequencies, the forced reponses of coupled vibration of propulsion shafting were analysed by the modal analysis method. For the forced response analysis, axial exciting forces, axial damper/detuner, propeller exciting forces and damping coefficients were extensively investigated. As the conclusion of this study, some items are cleared as next. - The torsional amplitudes are not influenced by the radial excitation forces. - The axial vibrational amplitudes are influenced by the tangential exciting forces. An increase of amplitude is observed for the speed range in the neighbourhood of any torsional critical speed. - The coupling effect becomes larger if torsional and axial critical speed are closer together. - The axial exciting force of propeller is relatively strong, comparing with those of axial forces of cylinder gas pressure and oscillating inertia of reciprocating mechanism. Therefore, as a resume one can say, that- Torsional vibration calculation with the classical one dimension model is still valid. - The influence of torsional excitation at each crank upon the axial vibration is impotent, especially in the neighbourhood of a torsional critical speed. That means that the calculation of axial vibration with the classical one dimension model is insufficient in most of cases. - The torsional exciting torque of propeller can be neglected in most of cases. But, the axial exciting forces of propeller can not be neglected for calculating axial vibration of propulsion shafting.

  • PDF

A Study on the Reaction Force Characteristics of the Gas Spring for the Automotive (자동차용 가스 스프링의 반력 특성에 관한 연구)

  • Lee, Choon Tae
    • Journal of Drive and Control
    • /
    • v.12 no.4
    • /
    • pp.35-40
    • /
    • 2015
  • A gas spring provides support force for lifting, positioning, lowering, and counterbalancing weights. It offers a wide range of reaction force with a flat force characteristic, simple mounting, compact size, speed controlled damping, and cushioned end motion. The most common usage is as a support on a horizontally hinged automotive tail gate. However, its versatility and ease of use has been applied in many other industrial applications ranging from office equipment to off-road vehicles. The cylinder of a gas spring is filled with compressed nitrogen gas, which is applied with equal pressure on both sides of the piston. The surface area of the rod side of the piston is smaller than the opposite side, producing a pushing force. The magnitude of the reaction force is determined by the cross-sectional area of the piston rod and the internal pressure inside the cylinder. The reaction force is influenced by many design parameters such as initial chamber volume, diameter ratio, etc. In this paper, we investigated the reaction force characteristics and carried out parameter sensitivity analysis for the design parameters of a gas spring.

Analysis of Pre-Swirl Effect for Plain-Gas Seal Using CFD (CFD를 사용한 비접촉식 가스 실의 입구 선회류 영향 해석)

  • Ha, Tae-Woong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.3
    • /
    • pp.26-31
    • /
    • 2013
  • In present 3D CFD study, the method for determining leakage and rotordynamic coefficients of a plain-gas seal is suggested by using the relative coordinate system for steady-state simulation. In order to find the effect of pre-swirl speed at seal inlet, pre-swirl velocity is included as a parameter. Present analysis is verified by comparison with results acquired from Bulk-flow analysis code and published experimental results. The results of 3D CFD rotordynamic coefficients of direct stiffness(K) and cross-coupled stiffness(k) show improvements in prediction. As pre-swirl speed at seal inlet increases, k also increases to destabilize system. However, pre-swirl speed at seal inlet does not show sensitivity to the leakage and rotordynamic coefficients of K and damping(C).

Nondestructive Evaluation on Hydrogen Effect of TIG Welded Stainless Steel for Component Design of Pressure Vessel

  • Lee, Jin-Kyung
    • Journal of Power System Engineering
    • /
    • v.21 no.3
    • /
    • pp.102-107
    • /
    • 2017
  • A tungsten inert gas (TIG) welding method was used for the bonding of stainless steel. TIG welding using inert gas (He or Ar gas) is a method to prevent oxidation and nitriding of materials and to combine non-ferrous metals. This method has the advantage of obtaining a smooth weld surface. In this study, the welding characteristics of 304 stainless steel welded by TIG welding method were analyzed by using nondestructive technique. Ultrasonic and Acoustic Emission (AE) was applied to evaluate the micro-damage of TIG welded 304 stainless steel. The velocity and damping coefficient of ultrasonic wave showed a slight difference in HAZ, which is the welding part of stainless steel. The AE parameters of average frequency, rise time and event were analyzed for the dynamic behavior of stainless steel during loading. Optimal AE parameters for evaluating the degree of damage to the specimen have been derived. Fractograph and metal structures of 304 stainless steel using SEM and optical microscope were discussed.

A Numerical Analysis of Acoustic Characteristics in Gas Turbine Combustor with Spatial Non-homogeneity (불균질한 온도장을 고려한 가스터빈 연소기의 음향장 해석)

  • Sohn, Chae-Hoon;Cho, Han-Chang
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1292-1297
    • /
    • 2004
  • Acoustic characteristics in an industrial gas-turbine combustor are numerically investigated by adopting linear acoustic analysis. Spatially non-homogeneous temperature field in the combustor is considered in the numerical calculation and the characteristics are analyzed in view of acoustic instability. Acoustic analysis are conducted in the combustors without and with acoustic resonator, which is one of combustion stabilization devices. It has been reported that severe pressure fluctuation frequently occurs in the adopted combustor, and the measured signal of pressure oscillation is compared with the acoustic-pressure response from the numerical calculation. The numerical results are in a good agreement with the measurement data. In this regard, the phenomenon of pressure fluctuation in the combustor could be caused by acoustic instability. The acoustic effects of the resonators are analyzed in the viewpoints of both the frequency tuning and the damping capacity.

  • PDF

Pressure Measurement Using Field Electron Emission Phenomena

  • Cho, Boklae
    • Applied Science and Convergence Technology
    • /
    • v.23 no.2
    • /
    • pp.83-89
    • /
    • 2014
  • Adsorption of residual gas molecules damped the emission current of a W (310) field electron emission (FE) emitter. The damping speed was linearly proportional to the pressure gauge readings at pressure ranging from ${\sim}10^{-8}Pa$ to ${\sim}10^{-9}Pa$, and the proportionality constant was employed to measure pressure in the $10^{-10}Pa$ range. A time plot of FE current revealed the existence of an "initial stable region" after the flash heating of W(310) FE, during which the FE current damps very slowly. The presence of non-hydrogen gas removed this region from the plot, supplying a means of qualitatively analysing the gas species.