• 제목/요약/키워드: Gas Cylinder

검색결과 744건 처리시간 0.023초

마이크로컴퓨터를 이용한 엔진성능시험(性能試驗)의 자동화(自動化)에 관한 연구(硏究)(I) -엔진성능시험(性能試驗)과 데이터수집(蒐集)의 자동화(自動化)- (A Microcomputer-Based Data Acquisition/Control System for Engine Performance Test(I) -Automation of Engine Performance Test and Data Acquisition-)

  • 류관희;정창주;박보순
    • Journal of Biosystems Engineering
    • /
    • 제12권3호
    • /
    • pp.7-16
    • /
    • 1987
  • This study was carried out to develop a microcomputer-based data acquisition and control system which was able to collect the data of engine performance test automatically and control the speed and load of the engine. The results of the study are summarized as follows: 1. The signal processing devices, which were able to measure cylinder pressure, coolant temperature, compositions of exhaust gas, fuel consumption, engine rpm and torque etc., were developed. The results of calibration showed that all of devices had high accuracy ranging from 0.3% to 0.69% respectively. 2. The PIA (peripheral interface adapter) for interfacing digital signal and PTM (programmable timer module) for displaying real time every 0.0408 sec were designed and developed. 3. An engine-speed control system using a stepping motor and driver was developed. The control system had the stability, and faster settling time than the manual control system. 4. The automatic control system of electrical dynamometer, which was able to control the speed and load of dynamometer, was developed with a SSD (shackleton system driver) and D/A converter. 5. The computer programs, which were able to collect and process the data of engine tests, were developed using both the machine language and BASIC.

  • PDF

Cold EGR 장착 디젤엔진에서의 NOx 저감에 관한 실험적 연구 (An Experimental Study on NOX Reduction in a Diesel Engine with Cold EGR)

  • 부펜더;나빈쿠마르;전용두
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2010년도 춘계학술발표논문집 2부
    • /
    • pp.769-772
    • /
    • 2010
  • The objective of the current research work is to investigate the usage of biodiesel combined with the use of EGR in order to reduce the emission of all regulated pollutants from diesel engines. A single cylinder, air cooled, constant speed direct injection diesel engine was used for the experimental work and a cold EGR system was developed and fitted to the engine. Concentrations of HCs, NOx, and CO from the exhaust gas along with the smoke opacity were measured. Engine performance parameters such as the brake thermal efficiency (BTE) and the brake specific energy consumption (BSEC) were also calculated from the measured data. The results from the present investigation suggest that 25-30% EGR rate could give excellent NOx reduction without any significance penalty on smoke opacity or BSEC under the engine load of up to 40%. Under the full load condition, 15% EGR rate was found to be an option while higher EGR rate resulted in inferior performance and heavy smoke.

  • PDF

루프소기형태의 2행정기관에서 분사압력 및 분사각도에 따른 분무특성 연구 (Effects of Injection Pressure and Injection Angle on Spray Characteristics in Loop Scavenged Type 2-stroke Engines)

  • 채수;유홍선
    • 한국자동차공학회논문집
    • /
    • 제4권1호
    • /
    • pp.165-176
    • /
    • 1996
  • The flow field and spray characteristics for loop scavenged type 2stroke engine having pancake shape was numerically computed using KIVA-Ⅱ code. The cylinder has 1intake port, 2side intake ports and 1exhaust port with induced flow angle 25 deg. In engine calculation, the chop techniques is used to strip or add planes of cells across the mesh adjacent to the TDC and the BDC(ports parts) for preventing the demand of exceed time during the computation, providing a control on cell height in the squish region. The modified turbulent model including the consideration of the compressibility effect due to the compression and expansion of piston was also used. The case of 25 deg.(injection angle) which is opposite to scavenging flow direction shows better the distribution of droplets and the evaporation rate of droplets compared to other cases(0 deg., - 25 deg.). When injection pressure was increased, the spray tip penetration became longer. When injection pressure was increased, the interaction between the upward gas velocity and spray droplets strongly cause. Thus the breakup of droplets is strongly occurred and the evaporation rate of droplets was found to be better.

  • PDF

오일 드레인과 엔진경사각도간의 상관관계 (A Study on the Correlation of Oil Drain and Engine Tilting Angle)

  • 김대열;박병완
    • 한국자동차공학회논문집
    • /
    • 제19권5호
    • /
    • pp.51-57
    • /
    • 2011
  • Parametric studies based on analysis of lubrication system of a four cylinder gasoline engine are illustrated system in this paper. In development process of engine lubrication system, parts of failure cases are related with oil pull over and oil churning phenomenon. The crankcase & head system pressure by oil churning phenomenon are gradual increased. It cause oil pull over phenomenon at engine breather line and oil over-consumption. In order to improve oil reduction and oil pull over phenomenon are also considered in the developing state. For this study, the characteristics of engine lubrication system are measured at various tilting angle and drain hole sizes. In addition, the oil flow & oil quantity are tested by blow by meter and catch jar. Results are presented to stabilize the oil supply system at sever driving condition. The data from present study are available for the engine lubrication system.

예혼합기의 열적성층화가 PRF연료의 예혼합압축자기착화에 미치는 영향 (Research about Thermal Stratification Effect on HCCI Combustion Fueled with Primary Reference Fuel)

  • 임옥택
    • 한국자동차공학회논문집
    • /
    • 제16권5호
    • /
    • pp.157-163
    • /
    • 2008
  • The HCCI combustion mode poses its own set of narrow engine operating by knocking. In order to solve this, inhomogeneity method of mixture and temperature is suggested. The purpose of this research is to get fundamental knowledge about the effect of thermal stratification on HCCI combustion of PRF -Air mixture. The temperature stratification is made by buoyancy effect in combustion chamber of RCM. The analysis items are pressure, temperature of in-cylinder gas and combustion duration. In addition, the structure of flames using the two dimensional chemiluminescence's images by a framing camera are analyzed. Under stratification, the LTR starting time and the HTR starting time are advanced than that of homogeneous. Further, the LTR period of homogeneous conditions became shorter than that of the stratified conditions. With the case of homogeneous condition, the luminosity duration becomes shorter than the case of stratified condition. Additionally, under stratified condition, the brightest luminosity intensity is delayed longer than at homogeneous condition.

발사체 선두부의 공력가열현상 특성연구 (The Study of Aerodynamic Heating Characteristics for the Design of Nose Shapes of Space Launcher)

  • 최원;김규홍;이경태
    • 한국항공우주학회지
    • /
    • 제30권6호
    • /
    • pp.14-20
    • /
    • 2002
  • 본 논문에서는 3단형 과학로켓(KSR-III) 기본형의 조건을 이용하여 선두부에서 발생하는 공력가열 현상을 예측하였다. 마하수 4.9, 10.2, 15의 극초음속 유동영역을 평형유동이라 가정하고 수치적 불안정성에 강건한 수치기법인 AUSMPW+ 수치기법과 충격파 정렬 격자계 (shock-aligned grid system)을 사용하여 반구형, Parabola형, 절두 원통형 선두부 형상에 따른 공력가열 현상을 계산하고 발사체 선두부에 사용되는 구조물인 복합재료의 열적안정성을 예측하였다.

압축착화 엔진에서 분사압이 저온연소에 미치는 영향 (Effect of Injection Pressure on Low Temperature Combustion in CI Engines)

  • 장재훈;이선엽;이용규;오승묵;이기형
    • 한국분무공학회지
    • /
    • 제18권1호
    • /
    • pp.21-26
    • /
    • 2013
  • Diesel low temperature combustion (LTC) is the concept where fuel is burned at a low temperature oxidation regime so that $NO_x$ and particulate matters (PM) can simultaneously be reduced. There are two ways to realize low temperature combustion in compression ignition engines. One is to supply a large amount of EGR gas combined with advanced fuel injection timing. The other is to use a moderate level of EGR with fuel injection at near TDC which is generally called Modulated kinetics (MK) method. In this study, the effects of fuel injection pressure on performance and emissions of a single cylinder engine were evaluated using the latter approach. The engine test results show that MK operations were successfully achieved over a range of with 950 to 1050 bar in injection pressure with 16% $O_2$ concentration, and $NO_x$ and PM were significantly suppressed at the same time. In addition, with an increase in fuel injection pressure, the levels of smoke, THC and CO were decreased while $NO_x$ emissions were increased. Moreover, as fuel injection timing retarded to TDC, more THC and CO emissions were generated, but smoke and $NO_x$ were decreased.

직렬 4기통 엔진의 가진력 해석 (Analysis of Exciting Forces for In-Line 4 Cylinders Engine)

  • 김진훈;이수종;이우현;김정렬
    • 동력기계공학회지
    • /
    • 제12권1호
    • /
    • pp.41-46
    • /
    • 2008
  • The primary objective of this study is to truly understand exciting forces of the in-line 4 cylinders engine. Exciting forces of the engine apply a source of the vehicle NVH(Noise, Vibration, Harshness). To understand exciting forces, first was governed theoretical equations for single cylinder engine. And this theoretical equations was programming using MATLAB software. To compare theoretical analysis value, was applied MSC.ADAMS software. To determined the specification of engine(2,000cc, in-line 4) was applied ADAMS/Engine module. And this specification for engine was applied ADAMS/View and MATLAB software. The geometry model for ADAMS/View analysis was produced by the 3-D design modeling software. After imported 3-D model, each rigid body was jointed suitable. Under idle speed for engine, was analysed. The results of analysis are fairly well agreed with those of three analysis method. Using MATLAB software proposed in this study, engine exciting fores can be predicted. Also using ADAMS/Engine module and ADAMS/View software, engine exciting forces can be predicted.

  • PDF

가솔린 직접 분사식 엔진에서 연료 분사 압력 증가에 따른 연소 및 배기 배출물 특성 (The Combustion and Emission Characteristics with Increased Fuel Injection Pressure in a Gasoline Direct Injection Engine)

  • 이준순;이용규
    • 한국분무공학회지
    • /
    • 제22권1호
    • /
    • pp.1-7
    • /
    • 2017
  • Recently, Performance and fuel efficiency of gasoline engines have been improved by adopting direct injection (DI) system instead of port fuel injection (PFI) system. However, injecting gasoline fuel directly into the cylinder significantly reduces the time available for mixing and evaporation. Consequently, particulate matters(PM) emissions increase. Moreover, as the emission regulations are getting more stringent, not only the mass but also the total number of PM should be reduced to satisfy the Euro VI regulations. Increasing the fuel injection pressure is one of the methods to meet this challenge. In this study, the effects of increased fuel injection pressures on combustion and emission characteristics were experimentally examined at several part load conditions in a 1.6 liter commercial gasoline direct injection engine. The main combustion durations decreased about $2{\sim}3^{\circ}$ in crank angle base by increasing the fuel injection pressure due to enhanced air-fuel mixing characteristics. The exhaust emissions and number concentration distributions of PM with particle sizes were also compared. Due to enhanced combustion characteristics, THC emissions decreased, whereas NOx emissions increased. Also, the number concentrations of PM, larger than 10 nm, also significantly decreased.

Investigation of Soot Formation in a D.I. Diesel Engine by Using Laser Induced Scattering and Laser Induced Incandescence

  • Lee, Ki-Hyung;Chung, Jae-Woo;Kim, Byung-Soo;Kim, Sang-Kwon
    • Journal of Mechanical Science and Technology
    • /
    • 제18권7호
    • /
    • pp.1169-1176
    • /
    • 2004
  • Soot has a great effect on the formation of PM (Particulate Matter) in D.I. (Direct Injection) Diesel engines. Soot in diesel flame is formed by incomplete combustion when the fuel atomization and mixture formation were poor. Therefore, the understanding of soot formation in a D.I. diesel engine is mandatory to reduce PM in exhaust gas. To investigate soot formation in diesel combustion, various measurements have been performed with laser diagnostics. In this study, the relative soot diameter and the relative number density in a DJ. engine was measured by using LIS (Laser Induced Scattering) and LII (Laser Induced Incandescence) methods simultaneously which are planar imaging techniques. And a visualization D.I. diesel engine was used to introduce a laser beam into the combustion chamber and investigate the diffusion flame characteristics. To find the optimal condition that reduces soot formation in diesel combustion, various injection timing and the swirl flow in the cylinder using the SCV (Swirl Control Valve) were applied. From this experiment, the effects of injection timing and swirl on soot formation were established. Effective reduction of soot formation is possible through the control of these two factors.