• Title/Summary/Keyword: Gas Cylinder

Search Result 745, Processing Time 0.027 seconds

The Performance and Emission of the Intake Port Injection Type Hydrogen Fueled Engine (흡기관 분사 방식 수소 연료 기관의 성능 및 배출물에 관한 연구)

  • 이형승;이석재;이종화;유재석;김응서
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.2
    • /
    • pp.27-33
    • /
    • 1993
  • Using the solenoid driven gas injection valve, Hydrogen fuel supply system was made. It was attached to a single cylinder research engine and intake port injection type hydrogen fueled S.I. engine was constructed. Engine performance, emission characteristics, and abnormal combustion were studied through the engine test performed with the variations of fuel-air equivalence ratio and spark timing. Compared with gasoline, hydrogen burns so fast that cylinder peak pressure and temperature are higher and NO is emitted more at full load condition. IN the case of intake port injection type engine, COVimep becomes lower due to the well-mixing of air and fuel, and engine output is lower owing to the low volumetric efficiency. As fuel-air equivalence ratio goes up, the combustion speed increases, and COVimep decreases. NO emission peaks slightly lean of stoichiometric. As spark timing advances and fuel-air equivalence ratio goes up, the cylinder peak pressure and temperature become higher, so abnormal combustions take place easily.

  • PDF

SIMULATION OF KNOCK WITH DIFFERENT PISTON SHAPES IN A HEAVY-DUTY LPG ENGINE

  • CHOI H.;LIM J.;MIN K.;LEE D.
    • International Journal of Automotive Technology
    • /
    • v.6 no.2
    • /
    • pp.133-139
    • /
    • 2005
  • In this study, a three-dimensional transient simulation with a knock model was performed to predict knock occurrence and autoignition site in a heavy-duty LPG engine. A FAE (Flame Area Evolutoin) premixed combustion model was applied to simulate flame propagation. The coefficient of the reduced kinetic model was adjusted to LPG fuel and used to simulate autoignition in the unburned gas region. Engine experiments using a single-cylinder research engine were performed to calibrate the reduced kinetic model and to verify the results of the modeling. A pressure transducer and a head-gasket type ion-probe circuit board were installed in order to detect knock occurrences, flame arrival angles, and autoignition sites. Knock occurrence and position were compared for different piston bowl shapes. The simulation concurred with engine experimental data regarding the cylinder pressure, flame arrival angle, knock occurrence, and autoignition site. Furthermore, it provided much information about in-cylinder phenomena and solutions that might help reducing the knocking tendency. The knock simulation model presented in this paper can be used for a development tool of engine design.

ICE GROSS HEAT RELEASE STRONGLY INFLUENCED BY SPECIFIC HEAT RATIO VALVES

  • Lanzafame, R.;Messina, M.
    • International Journal of Automotive Technology
    • /
    • v.4 no.3
    • /
    • pp.125-133
    • /
    • 2003
  • Several models for the evaluation of Gross Heat Release from the internel combustion engine (ICE) are often used in literature. One of these is the First Law - Single Zone Model (FL-SZM), derived from the First Law of Thermodynamic. This model present a twice advantage: first it describes with accuracy the physic of the phenomenon (charge heat release during the combustion stroke and heat exchange between gas and cylinder wall); second it hat a great simplicity in the mathematical formulation. The evaluation of Heat Release with the FL-SZM is based on pressure experimental measurements inside the cylinder, and ell the assumption of several parameters as the specific heat ratio, wall temperature, polytropic exponent for the motored cycle evaluation, and many others. In this paper the influence of gases thermodynamic properties on Cross Heat Release has been esteemed. In particular the influence of an appropriate equation for k=k(T) (specific heat ratio vs. temperature) which describes the variations of gases thermodynamic properties with the mean temperature inside the cylinder has been evaluated. This equation has been calculated by new V order Logarithmic Polynomials (VoLP), fitting experimental gases properties through the least square methods.

The Effect of Fuel Composition on Emissions and Combustion of CNG Engine at Partial Load (부분부하에서 연료 조성이 천연가스 엔진의 연소 및 배기에 미치는 영향)

  • Kim, Hyung-Min;Lee, Ki-Hyung;Kim, Bong-Gyu
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3288-3293
    • /
    • 2007
  • Compressed natural gas has good potential for alternative vehicle fuel due to its economical and clean characteristics. However, the composition of natural gas based on production location is known to affect performance and emissions of CNG engine. Thus, the objective of this paper is to clarify the effect of fuel composition on combustion and emissions of CNG engine. This paper presents combustion characteristics obtained from running a 2.5L, 4-cylinder CNG engine retrofitted IDI diesel engine with engine dynamometer. BSFC, emissions, fuel consumption and combustion pressure were measured under steady state operating conditions especially at partial load for CNG engine. Based on the experimental results, we found that CNG composition affects engine performance, fuel conversion efficiency and burning rate.

  • PDF

An experimental study on the bypass-type DPF using pneumatic cylinder systems (공압 시스템을 이용한 바이패스형 매연여과장치의 실험적 연구)

  • KIM, Sang-Am
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.54 no.1
    • /
    • pp.73-80
    • /
    • 2018
  • Intermittent duty of emergency generator has problems emitting large quantities of PM and NOx in exhaust gas. The aim of this study is to propose DPF system which can be applied to medium-large emergency generators. The system is composed of soot dust collector, silencer and filter trap, which is designed to reduce PM emissions at the emergency generator start-up. The pneumatic system controls a flow direction of exhaust gas to pass through the soot collector and filter trap until the engine reaches complete combustion condition. An experiment is performed to measure PM content and concentration to analyze the performance and characteristics of the proposed system.

Acoustic Analysis of the Cavity in Rotary Compressor (로터리 압축기 내부의 소음해석)

  • 정의봉;김봉준;김재호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.2
    • /
    • pp.97-103
    • /
    • 2000
  • Gas pulsation discharged from the cylinder causes noise in the rotary compressor. Mufflers are usually used to reduce the noise generated by the gas pulsation. The muffler has been designed to maximize the acoustic transmission loss of the muffler. The gas which went through muffler is discharged to the cavity in compressor. Thus, the acoustic characteristics of cavity should be taken into account in muffler design. In this paper, the program for the acoustic substructure synthesis method is developed. This program can be interfaced with SYSNOISE which is commercial acoustic package. Several types of mufflers designed to have the better acoustic performance are suggested in this work and compared with the existing commerical muffler in the compressor. The acoustic performance of mufflers taking into consideration of the cavity in the compressor is also carried out by the developed program.

  • PDF

A Basic Study on Piston-Ring Pack (피스톤-링 팩에 관한 기초 연구)

  • Chun, Sang-Myung
    • Tribology and Lubricants
    • /
    • v.21 no.2
    • /
    • pp.83-92
    • /
    • 2005
  • A piston assembly is very important because it directly receives the energy generated during combustion process. Surely, the friction and lubrication of piston-ring pack do an important role in the performance and fuel economy of an engine. In fact, the friction loss in piston-ring pack is the biggest portion to the whole engine friction. Therefore, the improvement of lubrication quality and friction loss in piston-ring pack will be directly related with the improvement in the performance and fuel economy of an engine. Meanwhile, the oil consumption and blow-by gas through piston-cylinder-ring crevices have to be controlled as less as possible. In these two aspects, the study on the optimized design of piston-ring pack has to be carried out. In this study, for the efficient design of piston-ring pack, it is focused to develop a basic computer program that predicts the inter-ring pressure, the motion of ring and the blow-by gas through a crevice volume model between adjacent rings, and the oil film thickness and the friction computed by lubrication theories.

A Study on the Reduction of Harmful Exhaust Gas with Diesel-Methanol Stratified Injection System in a Diesel Engine (층상연료분사(경유/메탄올)를 이용한 디젤엔진의 유해 배출물 저감에 관한 연구)

  • 강병무;안현찬;이태원;정성식;하종률
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.43-50
    • /
    • 2002
  • In the present study, reduction of harmful exhaust gas in a diesel engine using stratified injection system of dual fuel (diesel fuel and methanol) was tried. The nozzle and fuel injection pump of conventional injection system were remodeled to inject dual fuel in order from the same injector. The quantity of each fuel was controlled by micrometers, which were mounted at rack of injection pumps. The injection ratio of dual fuel was certificated by volumetric ratio in injection quantity test. Cylinder pressure and exhaust gas were measured and analyzed under various supply condition of duel fuel. We confirmed that combustion of dual fuel was performed successful1y by using modified injection system in a D.I. diesel. Soot and NOx are simultaneously reduced by stratified injection without large deterioration of thermal efficiency, but THC and CO are relatively increased.

Combustion and Emission Characteristics in CNG Engine with SCV (SCV를 장착한 CNG 엔진의 연소 및 배출가스 특성)

  • 김진영;박원옥;공태원;하종률
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.1-6
    • /
    • 2003
  • Natural gas is one of the promising alternative fuels because of the abundant deposits and the cleanness of emission gas. CNG has a lot of merits except lower burning speed has a slow disadvantage. One way to overcome the disadvantage is to raise a turbulence intensity. We give various intake for changing turbulence intensity in the cylinder by three kinds of swirl control valve with a way to raise a turbulence intensity. In the present study, a $1.8\ell$ conventional gasoline engine is modified to use a CNG as a fuel instead of gasoline. We try to virify combustion and emission characteristics in each engine parameters. Parameters of experimentation are equivalence ratio, spark timing and intake flow change. The results of this study are as swirl flows. In the case of adding swirl flow, burning speed and torque are increased. But NOx and THC concentration are increased a little respectively.

Liquid LPG Spray Characteristics With Injection Pressure Variation -Comparison with Diesel Spray- (분사압력변화에 따른 액체 LPG 분무특성 -디젤분무와의 비교-)

  • Lim, Hee-Sung;Park, Kweon-Ha
    • Journal of the Korean Society of Combustion
    • /
    • v.4 no.2
    • /
    • pp.43-50
    • /
    • 1999
  • Liquefied petroleum gas (LPG) has been used as motor fuel due to its low emissions and low cost. The fuel feeding system has been improved with stringent requirement for exhaust emissions. LPG carburetion system was first introduced, then the system has been changed to a precisely controlled gas injection system, but this gas feeding system has a limitation on improving power output. In order to improve an engine performance, a multi-point port injection system was introduced recently, and a liquid direct injection system into a cylinder was suggested as a next generation system to maximize a fuel economy as well as a power. This study addresses the analysis of the LPG spray from diesel injectors. The spray images are visualized and compared with diesel sprays in a wide injection pressure range. The photographs show much wider dispersion of LPG sprays.

  • PDF