• Title/Summary/Keyword: Gas Cylinder

Search Result 744, Processing Time 0.024 seconds

Effect of Valve Lift and Timing on Internal Exhaust Gas Recirculation and Combustion in DME Homogeneous Charge Compression Ignition Engine (DME 예혼합 압축 착화 엔진에서 밸브 양정과 개폐시기가 내부 배기가스 재순환과 연소에 미치는 영향)

  • Jang, Jin-Young;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.4
    • /
    • pp.93-100
    • /
    • 2009
  • Intake/exhaust valve timing and exhaust cam lift were changed to control the internal exhaust gas recirculation (IEGR) and combustion phase of homogeneous charge compression ignition (HCCI) engine. To measure the IEGR rate, in-cylinder gas was sampled during from intake valve close to before ignition start. The lower exhaust cam made shorter valve event than higher exhaust cam and made IEGR increase because of trapping the exhaust gas. IEGR rate was more affected by exhaust valve timing than intake valve timing and increased as exhaust valve timing advanced. In-cylinder pressure was increased near top dead center due to early close of exhaust valve. Ignition timing was more affected by intake valve timing than exhaust valve timing in case of exhaust valve lift 8.4 mm, while ignition timing was affected by both intake and exhaust valve timing in case of exhaust valve 2.5 mm. Burn duration with exhaust valve lift 2.5 mm was longer than other case due to higher IEGR rate. The fuel conversion efficiency with higher exhaust valve lift was higher than that with lower exhaust valve lift. The late exhaust and intake maximum open point (MOP) made the fuel conversion efficiency improve.

Three Dimensional Unsteady Flow Characteristics inside the Catalytic Converter of 6 Cylinder Gasoline Engine (6기통 가솔린 엔진에 장착된 촉매변환기 내의 3차원 비정상 유동특성 해석)

  • 정수진;김우승
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.108-120
    • /
    • 1998
  • A theoretical study of three-dimensional unsteady compressible non-reacting flow inside double flow of monolith catalytic converter system attached to 6-cylinder engine was performed for the achievement of performance improvement, reduction of light-off time, and longer service life by improving the flow distribution of pulsating exhaust gases. The differences between unsteady and steady-state flow were evaluated through the numerical computations. To obtains the boundary conditions to a numerical analysis, one dimensional non-steady gas dynamic calculation was also performed by using the method of characteristics in intake and exhaust system. Studies indicate that unsteady representation is necessary because pulsation of gas velocity may affect gas flow uniformity within the monolith. The simulation results also show that the level of flow maldistribution in the monolith heavily depends on curvature and angles of separation streamline of mixing pipe that homogenizes the exhaust gas from individual cylinders. It is also found that on dual flow converter systems, there is severe interactions of each pulsating exhaust gas flow and the length of mixing pipe and junction geometry influence greatly on the degree of flow distribution.

  • PDF

A Design for Natural Gas Reforming Reactor (천연가스 개질기 설계)

  • Lee, Taeckhong;Choi, Woonsun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.5
    • /
    • pp.545-550
    • /
    • 2012
  • This work is for the design study of natural gas reformer (40 $m^3/hr$ over). We used experimental kinetic data from literature. After that, we set up theoretical model based on experimental reaction kinetic data. The shape of reactor is 1.7 m long and 200 mm dia. with cylinder geometry. Volume of reactor is 53.4 liter. Average flow velocity of gases in the reactor has been determined 0.272 m/sec and residence time is 9.26 sec. Reaction temperature is $850^{\circ}C$, with pressure 9.3 Bar. Used natural gas volume is about 9.21 $m^3/hr$. Produced hydrogen is 43.7 $m^3/hr$ with no change of pressure. Unreacted natural gas is 0.09 $m^3/hr$ and the amount of steam is 26.9 $m^3/hr$. Steam to $CH_4$ (s/c ratio) is 2.91. Reforming reaction take place from the reactor entrance to 120 cm region of cylinder type reactor. After the entrance of reacting gases to 120 cm region, the reaction reaches equilibrium which is close to products. This study can be applicable to design various reactors. Output data is in good agreements with the data in literatures1).

Fabrication and Characterization of Gas-liquid Hybrid Reactor Equipped with Atmospheric Pressure Plasma (기-액 하이브리드 대기압 플라즈마 반응기 제작 및 특성 분석)

  • Kwon, Heoung Su;Lee, Won Gyu
    • Korean Chemical Engineering Research
    • /
    • v.60 no.3
    • /
    • pp.452-458
    • /
    • 2022
  • Three types of gas-liquid hybrid horizontal, vertical and needle-to-cylinder plasma reactors were fabricated. Through these reactors, a high-efficiency, eco-friendly cleaning concept that generates reactive active species generated in atmospheric plasma discharge and gas-liquid activation reaction of cleaning components through the potential difference within the electrode was presented. As a result of comparing the efficiency for cleaning performance, the needle-to-cylinder type reactor had the best characteristics. Through this study, it was confirmed that the gas-liquid hybrid atmospheric pressure plasma reactor has the potential to be applied to ultra-precision cleaning processes such as semiconductor processes.

Numerical Study on the Sealing Safety of a Valve Packing in a LPG Cylinder (LPG 용기용 밸브패킹의 누설안전에 관한 수치적 연구)

  • Kim, Chung-Kyun;Kim, Tae-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.1 s.34
    • /
    • pp.34-39
    • /
    • 2007
  • In this paper, the FEM result has been presented for a sealing safety between a valve packing and a valve seat during a open and close operation in a LPG cylinder. The sealing operation of a LPG valve is completed when the valve packing in which is made by a nylon-66 polymer is to stop a LP gas flow, which flows out from the outlet of a brass pipe in a LPG cylinder. The contact sealing mechanism of the valve may be classified by a flat contact of an unused valve packing and a circular groove contact of an used valve packing in a current LPG valve. Based on the FEM and experimental investigations the sealing force, 4.9 MPa for a flat contact mode of the unused valve packing is a little high compared to that of the used valve packing, which shows a circular groove contact geometry against a valve seat. But these sealing pressures for two contact modes are very low compared to the ultimate strenath 83 MPa of the nylon-66 and this may be designed with a excess strength of the valve.

  • PDF

A Study on Engine Oil Consumption Considering Wear of Piston-Ring and Cylinder Bore (피스톤-링 및 실린더 보아 마모를 고려한 엔진오일소모 연구)

  • Chun, Sang-Myung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.143-150
    • /
    • 2007
  • Ring and cylinder bore wear may not be a problem in most current automotive engines. However, a small change in ring face and cylinder bore diameter can significantly affect the lubrication characteristics and ring axial motion. This in turn can cause to change inter-ring pressure, blow-by and oil consumption in an engine. Therefore, by predicting the wear of piston ring face and cylinder bore altogether, the changed ring end gap and the changed volume of gas reservoir can be calculated. Then the excessive oil consumption can be predicted. Here, the oil amount through top ring gap into combustion chamber is estimated as engine oil consumption. Furthermore, the wear theories of ring and cylinder bore are included. The changed oil consumption caused by the new end gap and the new volume of oil reservoir around second land, can be calculated at some engine running interval. Meanwhile, the wear amount and oil consumption occurred during engine durability cycle are compared with the calculated values. The wear data of rings and cylinder bore are obtained from three engines after engine durability test. The calculated wear data of each part are turn out to be around the band of averaged test values or a little below. It is shown that the important factor regarding oil consumption increasement is the wear of ring face.

Influence of Preheating on Quality Changes of Fresh-cut Muskmelon (가공 전 열처리가 Fresh-cut Muskmelon의 품질변화에 미치는 영향)

  • 박연주;문광덕
    • Food Science and Preservation
    • /
    • v.11 no.2
    • /
    • pp.170-174
    • /
    • 2004
  • Whole muskmelon was blanched at 50$^{\circ}C$ water for inhibition decline of fresh-cut melon quality from direct heat treatment. The muskmelon, after storage at 5$^{\circ}C$ for 24 hours, was processed to melon cylinders with 2 cm diameter. The changes of color, texture and the quality characteristics such as gas composition. soluble solid content, pH during storage at 5$^{\circ}C$ were measured. Degree of oxygen contents decreased and that of carbon dioxide in melon cylinder increased during storage. Especially, changes of gas composition inside packages appeared high level cor in blanched melon cylinders than non-treatment melons. Blanching with whole fruits at 50$^{\circ}C$ had effects on hardness in melon cylinder. Blanched melon, without regard on branching time, appeared higher hardness value than that of non-blanched melon at 6 days storage. There were slight difference between treatment on melon cylinder color. Degrees of change in soluble solid contents and pH on melon cylinder blanched at 50$^{\circ}C$ for 20minuets were lower than that of other treatments. In consequence, blanching with whole fruit at 50$^{\circ}C$ for 20minuets, before minimal processing, was effective in preserving of texture and quality of melon cylinder during storage.

Experimental Investigation on Cracks and Defects of a Valve Sealing Components for a LPG Cylinder (LPG 용기용 밸브의 밀봉부품 크랙 및 결함에 관한 실험적 고찰)

  • Kim, Chung-Kyun;Lee, Byung-Kwan;Kim, Tae-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.1 s.34
    • /
    • pp.23-28
    • /
    • 2007
  • This paper presents an experimental investigation on the sealing defects and cracks of O-rings and a valve packing of a gas valve for a LPG cylinder. O-ring in which stops a gas leakage of a liquefied petroleum gas is very important for a LPG valve safety. Valve packing is to open and close a gas flow port for supplying and charging a LPG fuel. The sealing performance of two sealing units ism related to the leak safety and long lift of a gas valve. The investigated results show that most of O-rings was failed due to a circumferential crack in which is caused by partial press bonding failure near the partition zone and an excess compression rate. Some of the O-ring failure was originated by an extrusion of an excessive leak pressure of a LP gas. Thus, this paper strongly recommends a tight quality control and a safety guarantee system of O-rings and valve packing to guarantee a leak safety and to extend a service lift of a gas valve. At the end, a warranty policy of the sealing units should be adopted for increasing a product quality and safety of a gas valve.

  • PDF

Effect of fuel injection timing on the combustion and NOx emission characteristics in a single cylinder diesel engine applied with diesel fuel for naval vessel and biodiesel (함정용 디젤 연료와 바이오디젤 연료를 적용한 단기통 디젤엔진에서 연료분사시기가 연소 및 질소산화물 배출특성에 미치는 영향)

  • Lee, Hyungmin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.6
    • /
    • pp.681-687
    • /
    • 2014
  • The objective of this work presented here was focused on analysis of in-cylinder combustion characteristic, engine performance, and nitrogen oxides emission characteristic from marine gas oil for propulsion diesel engine of naval vessels and biodiesel with fuel injection timing in a single cylinder diesel engine. In addition, combustion process was analyzed with a high speed camera of marine gas oil and biodiesel fuel. Retarding the fuel injection timing from $BTDC25^{\circ}CA$ to $BTDC5^{\circ}CA$, in cylinder peak combustion pressure was gradually decreased, however, engine torque showed a tendency to increase. The highest nitrogen oxides level was measured at $BTDC15^{\circ}CA$, they were reduced at retarded and advanced condition on the basis of $BTDC15^{\circ}CA$. Comparing with combustion process of marine gas oil and biodiesel fuel at $BTDC5^{\circ}CA$, self-ignition timing of biodiesel fuel included oxygen content was faster than marine gas oil, however, a cautious observation indicates a slightly higher flame intensity for marin gas oil than biodiesel as a diffusion flame is developing.