• Title/Summary/Keyword: Gas Atomization

Search Result 397, Processing Time 0.022 seconds

An Experimental Study on the Spray and Lean Combustion Characteristics of Bio-enthanol-Gasoline Blended Fuel of GDI (직접분사식 바이오에탄올-가솔린 혼합연료의 분무 및 희박연소 특성에 관한 실험적 연구)

  • Park, Gi-Young;Kang, Seok-Ho;Kim, In-Gu;Lim, Cheol-Soo;Kim, Jae-Man;Cho, Yong-Seok;Lee, Seong-Wock
    • Journal of ILASS-Korea
    • /
    • v.19 no.3
    • /
    • pp.115-122
    • /
    • 2014
  • As a demand for an automobile increases, air pollution and a problem of the energy resources come to the fore in the world. Consequently, governments of every country established ordinances for green-house gas reduction and improvement of air pollution problem. Especially, as international oil price increases, engine using clean energy are being developed competitively with alternative transportation energy sources development policy as the center. Bio ethanol, one of the renewable energy produced from biomass, gained spotlight for transportation energy sources. Studies are in progress to improve fuel supply methods and combustion methods which are key features, one of the engine technologies. DI(Direct Injection), which can reduce fuel consumption rate by injecting fuel directly into the cylinder, is being studied for Green-house gas reduction and fuel economy enhancement at SI(Spark Ignition). GDI(Galoine Direct Injection) has an advantage to meet the regulations for fuel efficiency and $CO_2$ emissions. However it produces increased number of ultrafine particles, that yet received attention in the existing port-injection system, and NOX. As fuel is injected into the cylinder with high-pressure, a proper injection strategy is required by characteristics of a fuel. Especially, when alcohol type fuel is considered. In this study, we tried to get a base data bio-ethanol mixture in GDI, and combustion for optimization. We set fuel mixture rate and fuel injection pressure as parameters and took a picture with a high speed camera after gasoline-ethanol mixture fuel was injected into a constant volume combustion chamber. We figured out spraying characteristic according to parameters. Also, we determine combustion characteristics by measuring emissions and analyzing combustion.

Spray Characteristics of Supersonic Liquid Jet by a Nozzle Geometry of Miniature High-Pressure Injection System (축소형 초고압 분사 시스템의 노즐 형상에 따른 초음속 액체 제트 분무 특성에 관한 연구)

  • Shin, Jeung-Hwan;Lee, In-Chul;Kim, Heuy-Dong;Koo, Ja-Ye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.177-180
    • /
    • 2010
  • Two-stage light gas gun, sorted with Ballistic Range System, is used to research spray characteristics of supersonic liquid jets. When high pressure tube was pressurized to the 135 bar, diaphragm films which composed with OHP film are ruptured. Expansion gases accelerate a projectile approximately 250 m/s at the exit of pump tube. And accelerated projectile collides with liquid storage part and liquid jets were injected into supersonic conditions. Supersonic liquid jets show the multiple jets and generate shockwave at the forward region of jets. Supersonic liquid jets of speed and shockwave angle have different value at each case. Supersonic liquid jets with minimum velocities are injected with M=1.53 at the geometry condition of L/d=23.8.

  • PDF

Effects of Alloying Elements on the Microstructure and Tensile Properties of Rapidly Solidified Al-Mg Alloys (급속응고한 Al-Mg 합금의 미세조직 및 인장특성에 미치는 첨가원소의 영향)

  • Park, Hyun-Ho;Park, Chong-Sung;Kim, Myung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.17 no.4
    • /
    • pp.356-364
    • /
    • 1997
  • In order to study effects of Cu and Be on the microstructure and tensile properties of rapidly solidified Al-Mg alloys, Al-Mg-Cu-Be alloys have been rapidly solidified by inert gas atomization process. Microstructure of rapidly solidified Al-Mg-Cu-Be powders exhibited refinement and good dispersion of Be particles as increasing of solidification rate. Solidification rate of atomized powders was estimated to be about $5{\times}10^{3{\circ}}C/s$. Inert gas atomized Al-Mg-Cu-Be powders were hot-processed by vacuum hot pressing at $450^{\circ}C$ under 100 MPa and hot extruded with reduction ratio in area of 25: 1 at $450^{\circ}C$. The extruded Al-Mg-Cu-Be powders consisted of recrystallized fine Al grains and homogeneously dispersed fine Be particles, and exhibited improved tensile properties with increase in Cu content. $Al_2CuMg$ compounds precipitated in grain and grain boundaries of Al-Mg-Cu-Be alloys with aging heat treatment after solution treatment. Hardness and tensile properties were improved by increasing Cu content and Be addition. Compared with extruded Al-Mg-Cu powders, the extruded Al-Mg-Cu-Be powders exhibited finer recrystallized grains and improved tensile properties by dispersion hardening of Be and subgrain boundaries pinned by fine Be particles. After aging treatment, hardness and tensile properties were improved due to restricted precipitation by increasing of dislocation density around Be particles in matrix.

  • PDF

A Study on the Fabrication of Fe Based Alloy Powder for Laser Welding (레이저 용접용 Fe계 합금 분말 제조에 관한 연구)

  • Lee, Jong-Jae;Son, Young-San
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3315-3318
    • /
    • 2012
  • In this study, Fe-base alloy powder was prepared by gas atomizing method. Shape and crystal structure of the powder were investigated by FESEM, X-ray diffraction, and DSC. The powder was produced in a spherical shape, with a size of 45 ~ 90 ${\mu}m$. X-ray diffraction analysis revealed that the powder was fully amorphous, showing typical broad amorphous peak. From DSC analysis, Tg and Tx that are generally found in a bulk amorphous alloy were also observed in the alloy powder. Tg and Tx of the powder were $530^{\circ}C$ and $560^{\circ}C$, respectively. These results suggest us that the bulk amorphous alloy (BMG) powder prepared in this study is applicable to laser welding.

Effects of Annealing of Gas-atomized Fe-Si-Cr Powder (Fe-Si-Cr 분말합금의 열처리 효과)

  • Jang, Pyungwoo
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.1
    • /
    • pp.7-12
    • /
    • 2016
  • Effects of annealing of the gas-atomized Fe-9%Si-2%Cr powder which is suitable for high frequency application in mobile devices because of its high electrical resistivity were studied with an emphasis on the order-disorder phase transition. The formation of B2 ordered phase could not be suppressed during atomization process. When the powder was annealed at a temperature higher than $550^{\circ}C$ the peak diffracted from $DO_3$ phase could be detected. With increasing annealing temperature lattice parameter and coercivity decreased. An interesting phenomenon was an abrupt increment of coercivity in the powder annealed at $450^{\circ}C$. Highest permeability could be shown in the powder annealed at a relative low temperature of $150^{\circ}C$ and then the permeability decreased with annealing temperature. The above-mentioned results could be successfully explained by both the formation of $DO_3$ ordered phases and the change of electrical resistivity of the Fe-Si-Cr powder which was also originated from the phase transition.

Experimental and Numerical Investigation of the Effect of Load and Speed of T-GDI Engine on the Particle Size of Blow-by Gas and Performance of Oil Mist Separator (T-GDI 엔진의 속도 및 하중이 블로우바이 가스의 오일입자 크기와 오일분리기 성능에 미치는 영향에 대한 실험 및 수치적 연구)

  • Jeong, Soo-Jin;Oh, Kwangho
    • Journal of ILASS-Korea
    • /
    • v.25 no.4
    • /
    • pp.162-169
    • /
    • 2020
  • The worldwide focus on reducing the emissions, fuel and lubricant consumption in T-GDI engines is leading engineers to consider the crankcase ventilation and oil mist separation system as an important means of control. In today's passenger cars, the oil mist separation systems mainly use the inertia effect (e.g. labyrinth, cyclone etc.). Therefore, this study has investigated high efficiency cylinder head-integrated oil-mist separator by using a compact multi-impactor type oil mist separator system to ensure adequate oil mist separation performance. For this purpose, engine dynamometer testing with oil particle efficiency measurement equipment and 3D two-phase flow simulation have been performed for various engine operating conditions. Tests with an actual engine on a dynamometer showed oil aerosol particle size distributions varied depending on operating conditions. For instance, high rpm and load increases bot only blow-by gases but the amount of small size oil droplets. Submicron-sized particles (less than 0.5 ㎛) were also observed. It is also found that the impactor type separator is able to separate nearly no droplets of diameter lower than 3 ㎛. CFD results showed that the complex aerodynamics processes that lead to strong impingement and break-up can strip out large droplets and generate more small size droplets.

Experimental Validation on Performance of Waste-heat-recovery Boiler with Water Injection (물분사 폐열회수 보일러의 효용성에 대한 실험적 검증)

  • Jaehun Shin;Taejoon Park;Hyunseok Cho;Junsang Yoo;Seoksu Moon;Changeon Lee
    • Journal of ILASS-Korea
    • /
    • v.28 no.1
    • /
    • pp.43-48
    • /
    • 2023
  • The waste-heat-recovery boiler with water spray (HR-B/WS) applies the heat exchange between the inlet air and exhaust gas with the water spray into the inlet air. The evaporation of water in the inlet air promotes heat recovery from the exhaust gas so that thermal efficiency can be improved by the enhanced condensing effect. The NOx emission can also be reduced by lowering the flame temperature due to the dilution effect of the water. In this study, the validity of this concept is examined by the practical boiler test performed with a 24 kW condensing boiler under the full load condition according to the water injection amount. The theoretical amount of water injection is calculated under the assumption of full evaporation of the sprayed water, which is calculated as 50 g/min. Since the injected water cannot evaporate fully in the actual system, the maximum water spray amount is set as 100 g/min. The results showed that the water injection can increase the thermal efficiency up to 95.59% and reduce NOx and CO emissions simultaneously to 8.9 ppm and 35 ppm at 0% of O2. Although the heat energy loss increased due to the unevaporated water, the increase in water injection amount caused higher thermal efficiency due to the increased amount of the evaporated water.

The Study on the Drag Reduction for Gas/Liquid Two Phase Flow (기-액(氣-液) 2상유동(二相流動)시 항력(抗力)에 관(關)한 연구(硏究))

  • Cha, K.O.;Oh, Y.K.;Kim, J.G.
    • Journal of ILASS-Korea
    • /
    • v.1 no.3
    • /
    • pp.20-28
    • /
    • 1996
  • It is well known that drag reduction in single phase liquid flow is affected by polymer material, molecular weight, polymer concentration, pipe diameter, and flow velocity. Drag reduction in two phase flow can be applied to the transport of crude oil, phase change system such as chemical reactor, pool and boiling flow, and to present cavitation which occurs in pump impellers. But the research of drag reduction in two phase flow is not sufficient. The purpose of the present work is to evaluate the drag reduction by measuring pressure drop, void fraction whether polymer is added in the horizontal two phase system or not. Experiment has been conducted in a test section with 24 m of the inner diameter and 1,500 mm of the length. The used polymer materials are two kinds of polyacrylamide[PAAM] and co-polymer[A611P]. The polymer concentration was varied with 50, 100 and 200 ppm under the same experimental conditions. Experimental results were shown that the drag is higher reduced by co-polymer rather than polyanylamide.

  • PDF

Crystalline Behavior and Microstructure Analysis in Fe73.28Si13.43B8.72Cu0.94Nb3.63 Alloy

  • Oh, Young Hwa;Kim, Yoon Bae;Seok, Hyun Kwang;Kim, Young-Woon
    • Applied Microscopy
    • /
    • v.47 no.1
    • /
    • pp.50-54
    • /
    • 2017
  • The microstructure, the crystallization behavior, and magnetic properties of FeSi-based soft magnetic alloys (FINEMET) were investigated using transmission electron microscopy, X-ray diffraction, and coercive force measurements. The amorphous $Fe_{73.28}Si_{13.43}B_{8.72}Cu_{0.94}Nb_{3.63}$ alloys particles, prepared in $10^{-4}$ torr by gas atomization process, were heat treated at $530^{\circ}C$, $600^{\circ}C$, and $670^{\circ}C$ for 1 hour in a vacuum of $10^{-2}$ torr. Nanocrystalline Fe precipitation was first formed followed by the grain growth. Phase formation and crystallite sizes was compared linked to its magnetic behavior, which showed that excellent soft magnetic property can directly be correlated with its microstructure.

Analysis of Microstructures of Ni-based Amorphous Powders Prepared by Gas Atomization Process (가스분무법으로 제조한 Ni-계 비정질 분말의 미세구조 분석)

  • 김진천;배종수
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.96-96
    • /
    • 2003
  • 비정질 합금은 기존 결정질 합금에서는 얻을 수 없는 독특한 물리적, 화학적, 기계적, 전자기적 특성을 나타내는 것으로 알려져 있다. 비정질을 형성하기 위해서는 매우 큰 냉각속도가 필요하므로 제조 가능한 비정질 합금은 분말, ribbon, 박판 형태로 제한되어 있다. 최근 비정질 분말 제조 및 벌크 비정 질에 관한 연구는 많은 발전을 보아 왔지만, 아직도 고청정 비정질 합금 분말의 제조와 대량 생산화 관해서는 많은 연구가 요구된다. 본 연구에서는 고청정 Ni-Zr-Ti-Si-(Sn)계 벌크 비정질 분말을 가스분무법으로 제조하였다. 제조된 합금 분말은 각 입도 별로 구분하여, XRD 분석을 통하여 비정질 형성 가능 입도을 분석하였다. 분말의 외형은 SEM으로 분석하였으며, 미세구조는 TEM을 사용하였다. 열적특성은 DSC 분석으로 조사하였다. 또한 제조한 비정질 분말의 미세구조와 비교하기 위하여 Tg와 Tx 온도범위에서 열처리 한 분말의 미세구조를 분석하였다. XRD 분석 결과, 가스분무법으로 제조된 Ni-Zr-Ti-Si-(Sn) 분말 중에서 75$\mu\textrm{m}$ 이하의 분말은 비정질상을 가졌으며, 75$\mu\textrm{m}$ 이상의 분말은 결정질 또는 비정질의 혼합 상으로 구성되었다. 비정질 분말 회수율은 약 60% 이상이었다. 미세 TEM 분석에서 75$\mu\textrm{m}$ 이하 분말은 전형적인 비정질 Halo 형상을 보였으며, 결정질이 혼합된 분말은 비정질 기지상에 결정질 응고 수지상 조직이 혼합되어 있음을 확인하였다.

  • PDF