• Title/Summary/Keyword: Gas Amount

Search Result 2,669, Processing Time 0.032 seconds

Overview of Gas Hydrates as a Future Energy Source and Their Physical/Chemical Properties (미래 에너지로서 가스 하이드레이트의 개관 및 물리/화학적 특성)

  • Cha, Minjun;Min, Kyoung-Won
    • Journal of the Korean Society of Mineral and Energy Resources Engineers
    • /
    • v.55 no.6
    • /
    • pp.670-687
    • /
    • 2018
  • This paper reviews the structures, physical and chemical properties, origins and global distribution, amount of energy resources, production technologies, and environmental impacts of gas hydrates to understand the gas hydrates as future energy sources. Hydrate structures should be studied to clarify the fundamentals of natural gas hydrates, hydrate distributions, and amount of energy sources in hydrates. Phase equilibria, dissociation enthalpy, thermal conductivity, specific heat, thermal diffusivity, and fluid permeability of gas hydrate systems are important parameters for the the efficient recovery of natural gas from hydrate reservoirs. Depressurization, thermal stimulation, inhibitor injection, and chemical exchange methods can be considered as future technologies to recover the energy sources from natural gas hydrates, but so far depressurization is the only method to have been applied in test productions of both onshore and offshore hydrates. Finally, we discuss the hypotheses of environmental impacts of gas hydrates and their contribution to global warming due to hydrate dissociation.

Vitrification of Simulated Combustible Dry Active Wastes in a Pilot Facility

  • Yang, Kyung-Hwa;Park, Seung-Chul;Lee, Kyung-Ho;Hwang, Tae-Won;Maeng, Sung-Jun;Shin, Sang-Woon
    • Nuclear Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.355-364
    • /
    • 2001
  • In order to evaluate and finally optimize the vitrification condition for combustible dry active waste (DAW), dust and gas generation characteristics were investigated for PE, cellulose, and mixed waste Tests were conducted by varying the operation variables such as melter configuration, excess oxygen amount, and waste feeding rate. Results showed that dust generation characteristics were affected by the operation parameters and the melter's configuration is the dominant one. For all tested DAWs, dust generation was reduced by increasing the waste feeding rate and the excessive oxygen amount in the melter. Among waste types, dust amount was decreased by the order of mixed wastes, PE, and cellulose. Other parameters such as temperature variation and operation time have also affected the dust generation. The optimum condition for the DAW vitrification was determined as the melter's configuration equipped for minimizing the waste dispersion with 20 kg/h of waste feeding rate and 100% of excessive oxygen supply. CO gas concentration in the off-gas was immediately influenced by the combustion state in the melter, but showed similar trend as the dust generation. For the NOx production during the vitrification process, thermal NOx, which is generated from the Post Combustion Chamber (PCC), rather than fuel NOx was assumed to be dominant. The gas cleaning of efficiencies of the PCC, wet scrubber, and Selective Catalytic Reduction system (SCR) were found to be high enough to keep the concentration of pollutants (CO, NOx, SOx, HCI) in the stack below their relevant emission limits.

  • PDF

The R&D - Validity of Gas hydrates (가스 하이드레이트 R&D 타당성 평가)

  • Kim Yu Jeong;Kim Seong Yong;Huh Dae-Gee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.647-650
    • /
    • 2005
  • Gas hydrates draw great at tent ion recently as a new clean energy resources substituting conventional oil and gas hydrate its presumed huge amount of volume reaching 10 trillion tons of gas and environmentally friendly characteristics. Gas hydrate can contribute to the rapidly increasing consumption of natural gas in Korea and achieve the self support target by 2010 which is $30\%$ of total natural gas demand. This paper shows the importance and benefit of Gas hydrate comparing with new & renewable energy in Korea

  • PDF

Natural gas hydrate occurrence and detection in the Sea of Okhotsk

  • Jin Young-Keun;CHAOS Scientific Party CHAOS Scientific Party
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.47-49
    • /
    • 2006
  • The Sea of Okhotsk is the unique area providing the highest methane production rate of the northern hemisphere. The area of focused fluid venting offshore the NE Sakhalin continental slope was investigated during the CHAOS (Hydro-Carbon Hydrate Accumulations in the Okhotsk Sea) expeditions onboard of RV "Akademik Lavrentyev" In 2003, 2005 and 2006. The International Research Project CHAOS (Russia-Korea-Japan) aimed at the study of gas hydrate formation processes associated with the fluid venting in the Sea of Okhotsk. Several new gas hydrate accumulations were discovered during the cruise. Hydrate-associated structures have been named as KOPRI, VNIIOKeangeologia, POI and KIT (the names of cruise participant institutes) Some of hydrate-bearing cores contain big amount of gas hydrates: massive gas hydrate layers (up to 35cm thick) were recovered. The shallowest submarine gas hydrate accumulations in the world (at the depth less then 400m) were discovered during the cruise.

  • PDF

A Preliminary Study on Submarine Slope Failure of Gas Hydrate-bering Sediments (가스 하이드레이트가 매장된 해저사면의 붕괴에 관한 기초적 연구)

  • Park, Sung-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.399-404
    • /
    • 2008
  • The influence of gas hydrate dissociation on submarine slope stability was studied in this paper. Gas hydrates are stable under high pressure and low temperature conditions. Once gas hydrate dissociates due to natural or human activities, it generates large amount of gas and water. During gas hydrate dissociation, a pore pressure between soil particles increases and results in the loss of an effective stress and degradation of soil stiffness. A pore pressures model was proposed to calculated excess pore pressures generated by gas hydrate dissociation at the Storegga Slide. A slope stability analysis for the Storegga Slide using a two dimensional finite difference method was carried out by considering excess pore pressures due to gas hydrate dissociation. Since the excess pore pressure calculated by the proposed method resulted in the considerable loss of stiffness and strength in slope, a submarine slope failure occurred at the Storegga slide was well simulated.

  • PDF

A Study on the Reformation related in Gas insurance laws and Regulations of Korea for Prevention of Gas accident (사고예방을 위한 국내 가스관계법의 보험관련 법규개선에 관한 연구)

  • 송수정;강경식
    • Journal of the Korea Safety Management & Science
    • /
    • v.3 no.2
    • /
    • pp.25-31
    • /
    • 2001
  • Gas accidents are increasing every year, whereas the amount of using gas has been sharply increased due to conveniences, low-pollution, thermal efficiency of the gas. Gas accident has been recognizing serious social unstable elements as well as incredible economic damages of casualties of men and properties. For the prevention of the accidents, basic pre-countermeasure must be arranged to reduce gas accidents. The purpose of this study is to find out the strength of preliminary preventable functions against gas accidents throughout reformation of laws and regulations for insurance related in gas laws.

  • PDF

Analysis of Electric Substitution Effects by the Gas Consumption and Characteristics of Gas Cooling System (냉방기기 사용량과 특성을 고려한 가스냉방기기의 전력대체 효과 분석)

  • Park, Rae-Jun;Song, Kyung-Bin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.5
    • /
    • pp.669-675
    • /
    • 2012
  • Recently, the amount of electrical heat pump(EHP), a electrical conditioning equipment, is sharply increasing due to the luxury and multi-story trend of building. Accordingly, the cooling load that occupying substantial part of summer electric consumption has increased dramatically, making difficulties in domestic supply of electricity in summer. There are some efforts to replace it with an alternative cooling equipment such as gas heat pump(GHP), a gas cooling equipment, in order to solve the problem of summer electricity supply through reducing the summer electricity peak. It is rare, however, to find studies on the actual effects of GHP on the reduction of summer electricity peak. This study, therefore, estimated the effects of the GHP on the summer electricity peak by the gas consumption and characteristics of gas cooling systems. In addition, electric substitution effects by gas cooling systems were analyzed through case studies in the summer of 2010.

An Experimental Study on Characteristics of Temperature Separation in a Vortex Tube for Diesel Engine Exhaust Gas (Vortex Tube의 승용 디젤기관 배기가스 온도 분리특성에 관한 연구)

  • Jung, Young-Chul;Choi, Doo-Seuk;Im, Seok-Yeon;Kim, Hong-Ju;Ryu, Jeong-In
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.93-98
    • /
    • 2010
  • An object of this study is to confirm the opening amount of the throttle valve that is begun the temperature separation of vortex tube for various engine speed and load condition in a common rail diesel engine. The vortex tube located at downstream of the exhaust manifold is a device separating the incoming exhaust gas to hot and cold stream. To find optimum separation efficiency of vortex tube, the opening amount of throttle valve has been investigated for various engine speed and load conditions. Engine speed was found that the influence of engine speed was dominant compared with that of engine load. As engine speed was increased, the throttle opening amount starting temperature separation was reduced.

Combustion characteristics of diesel engine with bio-ethanol blend fuel (바이오 에탄올 혼합유에 대한 디젤기관의 연소특성)

  • Jung, Suk-Ho
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.45 no.2
    • /
    • pp.114-121
    • /
    • 2009
  • There are increased in using the bio-ethanol, as the carbon neutral attracts many researchers due to a reduction in carbon dioxide spotted as the global warming gas. A gasoline engine with 100% of the bioethanol was developed and used in Brazil already, but researches of using the bio-ethanol in diesel engines are lack. In this study, combustion tests with blend fuel of the gas oil and bio ethanol by 50% maximally due to a low cetane number of bio-ethanol were accomplished as a basic study of introduction of using the bioethanol in diesel engines. The result was that smoke emission was decreased with increase in proportion of the bio-ethanol, due to the increase of a amount of pre-mixed combustion with ignition delay. Although the amount of $CO_2$ is reduced according as the bio-ethanol is used(carbon neutral), the emission of $CO_2$ with increase in the proportion of the bio-ethanol was more increased due to lower a heat value of bio-ethanol than gas oil.

Emission Patterns of Carbon Dioxide & Methane by Liquid Pig Manure Treatments in Paddy Soil (논토양에서 돈분액비 시용에 따른 CH4 및 CO2 발생양상)

  • Oh, Seung-Ka;Yoon, Dong-Kyung;Lee, Eun-Jung;Lee, Byung-Jin;Jeon, Seung-Ho;Cho, Young-Son
    • Korean Journal of Organic Agriculture
    • /
    • v.23 no.4
    • /
    • pp.923-938
    • /
    • 2015
  • This study was conducted to serve as the basis for establishing a standard cultivation, which enhances the alternative utilization of pig manure, a major cause of environmental pollution, by finding a means for reducing greenhouse gas emissions for eco-friendly cultivation. In a laboratory, $CH_4$ and $CO_2$ emission patterns were investigated corresponding to incremental pig manure treatments in paddy soil. The emissions peaked 12 to 27 days after manure application in the 100~400% applications. It was found that increasing applications of pig manure resulted an increase in $CH_4$ and $CO_2$ emissions. Additionally, application of more than 150% emitted a larger amount of these gasses than applying chemical fertilizer. However, the test application of 100% pig manure emitted a smaller amount of $CH_4$ and hence Global Warming Potential (GWP) than those emitted by chemical fertilizer. If appropriate amount of fertilization is applied in compliance with the standard application rate, the pig manure may be effective in reducing greenhouse gas emissions and the soil environment made more favorable than with the use of chemical fertilizer.