• Title/Summary/Keyword: Gartanin

Search Result 3, Processing Time 0.016 seconds

Gartanin enhances TRAIL-mediated liver cancer cell death through DR5 upregulation and autophagy activation

  • Dong-Oh Moon
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.53-59
    • /
    • 2023
  • Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has no effect on normal cells, but selectively can induce apoptosis in tumor cells. Gartanin, a xanthone compound in mangosteen, has been shown to inhibit cancer cell growth by arresting the cell cycle and inducing autophage. In this study, we revealed that gartanin can sensitize TRAIL-induced human liver cancer cell death. We also found that gartanin enhances DR5 expression, a death receptor for TRAIL. This effect appears to be related to CHOP activation associated with the response of endoplasmic reticulum stress. Gartanin treatment also inhibited p62 protein expression and cleaved LC3 to activate autophagy flux, which is related with TRAIL-induced cell death. Pretreatment with autophagy flux inhibitor, LY294002, inhibited gartanin-induced DR5 expression. In summary, our results reveal that the combined treatment of gartanin and TRAIL can be a valuable tool for cancer treatment.

Inhibition of liver fibrosis by sensitization of human hepatic stellate cells by combined treatment with galtanin and TARIL

  • Dong-Oh Moon
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.138-143
    • /
    • 2023
  • Liver fibrosis is caused by metabolic problems such as cholestasis, genetic problems, or viral infections. Inhibiting hepatic stellate cell (HSC) activation or inducing selective apoptosis of activated HSCs is used as a treatment strategy for liver fibrosis. It has been reported that when HSCs are activated, their apoptosis sensitivity to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is enhanced because the expression of death receptor 5 is elevated. Finding a natural compound that can enhance the apoptotic effect of TRAIL on HSCs is a necessary strategy for liver fibrosis treatment. It was confirmed here that mangosteen-derived gartanin increased the effect of TRAIL-induced apoptosis by increasing the expression of DR5 in a p38-dependent manner in the hepatic stellate cell line LX-2. Combined treatment with gartanin and TRAIL accelerated DNA cleavage through caspase-3 activation and enhanced antifibrotic effects in LX-2 cells.

[${\gamma}-Mangostin$ and Rubraxanthone, Two Potential Lead Compounds for Anti-cancer Activity against CEM-SS Cell Line

  • Ee, G.C.L.;Izzaddin, S.A.;Rahmani, M.;Sukari, M.A.;Lee, H.L.
    • Natural Product Sciences
    • /
    • v.12 no.3
    • /
    • pp.138-143
    • /
    • 2006
  • Our continuing interest on Garcinia and Mesua species has led us to carry out a detail study on the chemistry of the root bark of Garcinia mangostana (Guttiferae) since this part of the plant has not been investigated before, and the strm bark of Mesua corneri (Guttiferae) an uninvestigated species. This study has yielded six xanthones, ${\alpha}-mangostin$ (1), ${\beta}-mangostin$ (2), ${\gamma}-mangostin$ (3), garcinone-D (4), mangostanol (5) and gartanin (6) from Garcinia mangostana and two xanthones rubraxanthone (7) and inophyllin B (8) from Mesua corneri. Structural elucidations were achieved using $^1H,\;^{13}C$ NMR and MS data. The crude hexane and chloroform extracts of the root bark of Garcinia mangostana and the hexane extract of the stem bark of Mesua corneri were found to be active against CEM-SS cell lines with $IC_{50}$ values less than $30\;{mu}g/ml$. Moreover, ${\gamma}-mangostin$ gave a very low $LC_{50}$ value of $4.7\;{mu}g/ml$ while rubraxanthone gave an $LC_{50}$ value of $5.0\;{mu}g/ml$ indicating these two compounds to be potential lead compounds for anti-cancer activity against the CEM-SS cell line. This paper reports the isolation and identification of these compounds as well as bioassay data for the crude extracts, ${\gamma}-mangostin$ and rubraxanthone.