• Title/Summary/Keyword: Garhwal region

Search Result 9, Processing Time 0.019 seconds

Indigenous Knowledge on the Utilization of Medicinal Plant Diversity in the Siwalik Region of Garhwal Himalaya, Uttarakhand

  • Gaur, R.D.;Sharma, Jyotsana
    • Journal of Forest and Environmental Science
    • /
    • v.27 no.1
    • /
    • pp.23-31
    • /
    • 2011
  • Ever since the dawn of civilization, the ambient vegetation and the resources constituted major source of human existence for various substantial requirements. Our present knowledge on plant resources emerged from the traditional heritable knowledge descended from generation to generation. However, traditional knowledge pertaining to several aspects remained untapped from various remote localities or populations. Furthermore, with the present trends of excessive exploitation of natural resources and degradation of habitats, conservation and ecological management require coherence of traditional skills and modern approaches. Therefore, the present study is to record traditional plant based knowledge among the inhabitants of Siwalik region of Uttarakhand Himalaya. Extensive field survey was made for the collection of data on the medicinal aspects of plant species in the study area covering the parts of districts Pauri, Dehradun and Haridwar. During the course of study 130 plant species belonging to 65 families are reported, used as traditional medicine by the local inhabitants of this region.

Change in Community Composition and Soil Carbon Stock Along Transitional Boundary in a Sub-Tropical Forest of Garhwal Himalaya

  • Kumar, Munesh;Kumar, Manish;Saleem, Sajid;Prasad, Sunil;Rajwar, G.S.
    • Journal of Forest and Environmental Science
    • /
    • v.29 no.3
    • /
    • pp.194-199
    • /
    • 2013
  • The aim of the present study was to assess the effect of transitional boundary on community composition and soil carbon stock. Five vegetation types were recognized horizontally along the transitional strip based on the dominance of tree species i.e., Pure Anogeissus latifolia forest (P.AL), mixed Pinus roxburghii and Lannea coromandelica forest (M.PR&LC), pure Pinus roxburghii forest (P.PR), mixed Pinus roxburghii and Lannea coromandelica (M.PR&LC) and pure Anogeissus latifolia forest (P.AL). The results revealed that Anogeissus latifolia was reported dominant tree in the outer transitional boundaries of the forest, which reduced dominance of trees towards middle where Pinus roxburghii was found dominant. The soil carbon stock was reported higher in the Anogeissus latifolia dominant forest and reduced with the dominance of Pinus roxburghii in the middle site. Both the species are growing close to one another and competing for survival, but the aggressive nature of Anogeissus latifolia particular in this region may change new growth of Pinus roxburghii and will enhance soil carbon stock. But high anthropogenic pressure on Anogeissus latifolia tree species could be limited chance to further its flourish.

Atmospheric Carbon Dioxide Levels in Garhwal Himalaya, India

  • Anthwal, Ashish;Joshi, V.;Joshi, S.C;Sharma, Archana;Kim, Ki-Hyun
    • Journal of the Korean earth science society
    • /
    • v.30 no.5
    • /
    • pp.588-597
    • /
    • 2009
  • Measurements of atmospheric $CO_2$ were made in the mountainous region of Srinagar-Garhwal, India (January to December 2006). Concentrations of $CO_2$ averaged $393\pm4.9$ ppm in 2006. Daily variations of $CO_2$ values showed minimum during the daytime (376.2 ppm) and peaked in the morning/evening (410.1 ppm). At monthly intervals, the $CO_2$ values varied from $367\pm11.14$ (May) to $425.2\pm13.54$ ppm (March). If divided on a seasonal basis, the values declined to minimum amounts in post-monsoon ($389.9\pm9.0$ ppm) and reached maximums during winter ($397.1\pm11.6$ ppm). Although phenology is significant in controlling $CO_2$ levels, short-term changes cannot be explained without the anthropogenic perturbations (e.g., vehicular pollution and forest fires). The $CO_2$ concentrations in Srinagar-Garhwal (393.4 ppm) were generally higher than those of other major monitoring locations around the world.

Physical Properties of Soils in Relation to Forest Composition in Moist Temperate Valley Slopes of the Central Western Himalaya

  • Sharma, C.M.;Gairola, Sumeet;Ghildiyal, S.K.;Suyal, Sarvesh
    • Journal of Forest and Environmental Science
    • /
    • v.26 no.2
    • /
    • pp.117-129
    • /
    • 2010
  • The present study was undertaken in moist temperate forest of Mandal-Chopta area in the Garhwal region of Uttarakhand, India. The aim of the present study was to assess the physical properties of soils in relation to the forest structure and composition. Twelve forest types according to the altitude, slope aspect and species compositions were selected for the study. Physical properties of soil i.e., soil colour, soil texture (per cent of sand, silt and clay), moisture content, water holding capacity, porosity, bulk density (gm/$cm^3$) and void ratio were analyzed for three different depths viz., (i) 'upper' (0-10 cm), (ii) 'middle' (11-30 cm) and (iii) 'lower' (31-60 cm) in all the selected forest types. Phytosociological and diversity parameters viz. total basal cover ($Gha^{-1}$), stem density ($Nha^{-1}$), tree species richness, Simpson concentration of dominance and Shannon-Wiener diversity index were also calculated for each forest type. This study also provides the comparisons between the results of physical analysis of the present study with numerous other previous studies in the temperate Himalayan region of the Uttarakhand.

Some Desmids from Garhwal Region of Uttarakhand, India

  • Misra, Pradeep Kumar;Misra, Purnima;Shukla, Madhulika;Prakash, Jai
    • ALGAE
    • /
    • v.23 no.3
    • /
    • pp.177-186
    • /
    • 2008
  • The present paper consists of 42 taxa belonging to 7 genera of desmids (green algae) collected from two districts of Garhwal region of Uttarakhand (Western Himalayas). The district Haridwar is located 29° 55’to 29° 59’N latitude and 68° 5’to 68° 30’E longitude covering about 2360 km2 area and Dehradun district is situated between 77° 34’to 78° 18’E longitude and 29° 58’to 30° 58’N latitude. Seven genera of desmids are (with number of taxa in parenthesis): Closterium Nitzsch. (9), Cosmarium Corda ex Ralfs (25), Euastrum Ehr. (2), Spondylosium Breb. (1), Micrasterias Ag. (1), Staurastrum Meyen (3), Arthrodesmus Ehr. (1). All these taxa constitute new records for the area. The algal localities are relatively cleaner than those of majority of urban areas. A rich assemblage of desmids shows that water bodies of these hilly areas are still undisturbed and need protection for preservation of algal biodiversity.

Altitudinal Variation in Species Composition and Soil Properties of Banj Oak and Chir Pine Dominated Forests

  • Kumar, Munesh;Singh, Harpal;Bhat, Jahangeer A.;Rajwar, G.S.
    • Journal of Forest and Environmental Science
    • /
    • v.29 no.1
    • /
    • pp.29-37
    • /
    • 2013
  • The study was carried out in two different forest types viz., Banj oak and Chir pine forests to assess the variation in forest species composition and soil properties along altitudinal gradients in the Garhwal Himalayas. The results of the study showed that between the forests soil moisture was higher in Banj oak forest because of closed canopy and dense forest compared to Chir pine forest. The sand particles were reported higher in Banj oak forest which might be due to the addition of organic matter favouring coarse structure of soil, helping in holding maximum water in soils. However in the Chir pine forest low amount of soil organic matter and presence of clayey soil, develops soil compactness which reduces the penetration of water resulting in high soil bulk density. The higher accumulation of litter and presence of moisture in Banj oak forest favours higher nutrient level of nitrogen, phosphorus and potassium compared to Chir pine forest. The soil organic carbon also reduced with increasing altitude at both gradients. While bulk density has reverse trend with soil organic carbon in both the forests at different peaks of same region. In Banj oak forest, the highest density and total basal cover was reported 1,100 tree $ha^{-1}$ and 58.86 $m^2\;ha^{-1}$ respectively. However, the highest values of density and total basal cover of Chir pine forest was 560 tree$ha^{-1}$ and 56.94 $m^2\;ha^{-1}$ respectively. The total density and basal cover of both the forests reduced with increasing altitude. The study concludes that Banj oak forest has better nutrient cycling ability, well developed foest floor and has a greater protective and productive features compared to the Chir pine forest which is without lower vegetation cover and having only pine litter accumulation which does not allow any other species to grow.

Species Composition and Diversity in Mid-altitudinal Moist Temperate Forests of the Western Himalaya

  • Gairola, Sumeet;Sharma, C.M.;Suyal, Sarvesh;Ghildiya, S.K.
    • Journal of Forest and Environmental Science
    • /
    • v.27 no.1
    • /
    • pp.1-15
    • /
    • 2011
  • The present study was undertaken in middle altitudinal (1500 to 2500 masl) moist temperate forest of Mandal-Chopta area in the Garhwal region of Uttarakhand, India. The aim of the present study was to assess the variation in species composition and diversity in different vegetation layers viz. herb, shrub and tree, at different altitudes. Shannon-Wiener diversity index ($\bar{H}$), $Nha^{-1}$, total basal cover per hectare (G), Simpson concentration of dominance, Pielou Equitability, species richness (SR), Margalef index, Menheink index of species richness and ${\beta}$-diversity were calculated to understand community composition. Tree G ranged from 84.25 to 35.08 $m^2ha^{-1}$ and total stem density varied from 990 to 1470 Nha-1. Total SR (herb, shrub and trees) among different forest types ranged between 31 and 58. Maximum G of herb and shrub layers was recorded at lower altitudes between 1500 and 1650 masl. ${\beta}$-diversity was higher in herb layers as compared to tree and shrub layers. Dominance-diversity curves were also drawn to ascertain resource apportionment among various species in different forest types. Values of species diversity, $\bar{H}$, $Nha^{-1}$ and G were higher in the study area as compared to similar forests growing in other parts of Uttarakhand Himalaya.

Pedicularis cheilanthifolia var. albida (Orobanchaceae): A new record for the flora of Uttarakhand, India

  • Sunit SINGH;Sajan THAKUR;J.P. MEHTA;Harish Chander DUTT
    • Korean Journal of Plant Taxonomy
    • /
    • v.53 no.1
    • /
    • pp.65-68
    • /
    • 2023
  • The herb Pedicularis cheilanthifolia var. albida (Pennell) P. C. Tsoong is reported and collected for the first time from the Rudraprayag District of Uttarakhand. The species was seen growing along a glacial stream in an alpine region between 4,100 and 4,400 m asl. Morphological characteristics of the species were examined and processed for herbarium deposition. To simplify taxon identification, a brief taxonomic description and illustration of the taxon are provided.

Assessment of Carbon Sequestration Potential in Degraded and Non-Degraded Community Forests in Terai Region of Nepal

  • Joshi, Rajeev;Singh, Hukum;Chhetri, Ramesh;Yadav, Karan
    • Journal of Forest and Environmental Science
    • /
    • v.36 no.2
    • /
    • pp.113-121
    • /
    • 2020
  • This study was carried out in degraded and non-degraded community forests (CF) in the Terai region of Kanchanpur district, Nepal. A total of 63 concentric sample plots each of 500 ㎡ was laid in the inventory for estimating above and below-ground biomass of forests by using systematic random sampling with a sampling intensity of 0.5%. Mallotus philippinensis and Shorea robusta were the most dominant species in degraded and non-degraded CF accounting Importance Value Index (I.V.I) of 97.16 and 178.49, respectively. Above-ground tree biomass carbon in degraded and non-degraded community forests was 74.64±16.34 t ha-1 and 163.12±20.23 t ha-1, respectively. Soil carbon sequestration in degraded and non-degraded community forests was 42.55±3.10 t ha-1 and 54.21±3.59 t ha-1, respectively. Hence, the estimated total carbon stock was 152.68±22.95 t ha-1 and 301.08±27.07 t ha-1 in degraded and non-degraded community forests, respectively. It was found that the carbon sequestration in the non-degraded community forest was 1.97 times higher than in the degraded community forest. CO2 equivalent in degraded and non-degraded community forests was 553 t ha-1 and 1105 t ha-1, respectively. Statistical analysis showed a significant difference between degraded and non-degraded community forests in terms of its total biomass and carbon sequestration potential (p<0.05). Studies indicate that the community forest has huge potential and can reward economic benefits from carbon trading to benefit from the REDD+/CDM mechanism by promoting the sustainable conservation of community forests.