• Title/Summary/Keyword: Garabedian kernel

Search Result 2, Processing Time 0.023 seconds

UNIQUENESS OF TOEPLITZ OPERATOR IN THE COMPLEX PLANE

  • Chung, Young-Bok
    • Honam Mathematical Journal
    • /
    • v.31 no.4
    • /
    • pp.633-637
    • /
    • 2009
  • We prove using the Szeg$\H{o}$ kernel and the Garabedian kernel that a Toeplitz operator on the boundary of $C^{\infty}$ smoothly bounded domain associated to a smooth symbol vanishes only when the symbol vanishes identically. This gives a generalization of previous results on the unit disk to more general domains in the plane.

COMPUTATION OF THE MATRIX OF THE TOEPLITZ OPERATOR ON THE HARDY SPACE

  • Chung, Young-Bok
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.1135-1143
    • /
    • 2019
  • The matrix representation of the Toeplitz operator on the Hardy space with respect to a generalized orthonormal basis for the space of square integrable functions associated to a bounded simply connected region in the complex plane is completely computed in terms of only the Szegő kernel and the Garabedian kernels.