• Title/Summary/Keyword: Gap Filling

Search Result 183, Processing Time 0.034 seconds

Modeling of the filling process during resin injection/compression molding

  • Chang, Chih-Yuan
    • Advanced Composite Materials
    • /
    • v.16 no.3
    • /
    • pp.207-221
    • /
    • 2007
  • The filling process of resin injection/compression molding (I/CM) can be divided into injection and compression phases. During the resin injection the mold is kept only partially closed and thus a gap is present between the reinforcements and the upper mold. The gap results in preferential flow path. After the gap is filled with the resin, the compression action initiates and forces the resin to penetrate into the fiber preform. In the present study, the resin flow in the gap is simplified by using the Stokes approximation, while Darcy's law is used to calculate the flow field in the fiber mats. Results show that most of the injected resins enter into the gap during the injection phase. The resin injection time is extremely short so the duration of the filling process is determined by the final closing action of the mold cavity. Compared with resin transfer molding (RTM), I/CM process can reduce the mold filling time or injection pressure significantly.

Effect of a Multi-Step Gap-Filling Process to Improve Adhesion between Low-K Films and Metal Patterns

  • Lee, Woojin;Kim, Tae Hyung;Choa, Yong-Ho
    • Korean Journal of Materials Research
    • /
    • v.26 no.8
    • /
    • pp.427-429
    • /
    • 2016
  • A multi-step deposition process for the gap-filling of submicrometer trenches using dimethyldimethoxysilane (DMDMOS), $(CH_3)_2Si(OCH_3)_2$, and $C_xH_yO_z$ by plasma enhanced chemical vapor deposition (PECVD) is presented. The multi-step process consisted of pre-treatment, deposition, and post-treatment in each deposition step. We obtained low-k films with superior gap-filling properties on the trench patterns without voids or delamination. The newly developed technique for the gap-filling of submicrometer features will have a great impact on inter metal dielectric (IMD) and shallow trench isolation (STI) processes for the next generation of microelectronic devices. Moreover, this bottom up gap-fill mode is expected to be universally for other chemical vapor deposition systems.

Evaluation on the buffer temperature by thermal conductivity of gap-filling material in a high-level radioactive waste repository

  • Seok Yoon;Min-Jun Kim ;Seeun Chang ;Gi-Jun Lee
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4005-4012
    • /
    • 2022
  • As high-level radioactive waste (HLW) generated from nuclear power plants is harmful to the human body, it must be safely disposed of by an engineered barrier system consisting of disposal canisters and buffer and backfill materials. A gap exists between the canister and buffer material in a HLW repository and between the buffer material and natural rock-this gap may reduce the water-blocking ability and heat transfer efficiency of the engineered barrier materials. Herein, the basic characteristics and thermal properties of granular bentonite, a candidate gap-filling material, were investigated, and their effects on the temperature change of the buffer material were analyzed numerically. Heat transfer by air conduction and convection in the gap were considered simultaneously. Moreover, by applying the Korean reference disposal system, changes in the properties of the buffer material were derived, and the basic design of the engineered barrier system was presented according to the gap filling material (GFM). The findings showed that a GFM with high initial thermal conductivity must be filled in the space between the buffer material and rock. Moreover, the target dry density of the buffer material varied according to the initial wet density, specific gravity, and water content values of the GFM.

Study on Wave Propagation Characteristics Modeling in Tunnel (터널 환경에서의 전파전파 특성 모델링 연구)

  • Jeong, Won-Jeong;Kim, Tae-Hong;Han, Il-Tak;Choi, Moon-Young;Ryu, Joon-Gyu;Lee, Ho-Jin;Pack, Jeong-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.9
    • /
    • pp.1003-1013
    • /
    • 2009
  • In the domestic environments, there are many tunnels since most of terrains have mountains. To ensure the quality of wireless network service in NLOS environment like tunnels which differ from indoor or outdoor wireless channels, researches on wave-propagation characteristics. through such channel are necessary. Especially, in such environment the ground repeater called Gap-Fillers are usually used for satellite mobile services. To make sure that mobile service using satellites in tunnels is available, the research about Gap Filling method is essential. This research is focus on the characterising the wave-propagation through tunnels, to find the appropriate frequency, HPBW of the Gap-Filler antennas, the number of Gap-Fillers, etc. In this paper, we present the effective Gap Filling method in tunnels for ISM band, based on analysis of ray tracing and measurement results.

Gap-Fill Characteristics and Film Properties of DMDMOS Fabricated by an F-CVD System

  • Lee, Woojin;Fukazawa, Atsuki;Choa, Yong-Ho
    • Korean Journal of Materials Research
    • /
    • v.26 no.9
    • /
    • pp.455-459
    • /
    • 2016
  • The deposition process for the gap-filling of sub-micrometer trenches using DMDMOS, $(CH_3)_2Si(OCH_3)_2$, and $C_xH_yO_z$ by flowable chemical vapor deposition (F-CVD) is presented. We obtained low-k films that possess superior gap-filling properties on trench patterns without voids or delamination. The newly developed technique for the gap-filling of submicrometer features will have a great impact on IMD and STI for the next generation of microelectronic devices. Moreover, this bottom up gap-fill mode is expected to be universal in other chemical vapor deposition systems.

Filling of Cu-Al Alloy Into Nanoscale Trench with High Aspect Ratio by Cyclic Metal Organic Chemical Vapor Deposition

  • Moon, H.K.;Lee, S.J.;Lee, J.H.;Yoon, J.;Kim, H.;Lee, N.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.370-370
    • /
    • 2012
  • Feature size of Cu interconnects keep shrinking into several tens of nanometer level. For this reason, the Cu interconnects face challenging issues such as increase of electro-migration, line-width dependent electrical resistivity increase, and gap-filling difficulty in high aspect ratio structures. As the thickness of the Cu film decreases below 30 nm, the electrical resistivity is not any more constant, but rather exponential. Research on alloying with other elements have been started to inhibit such escalation in the electrical resistivity. A faint trace of Al added in Cu film by sputtering was reported to contribute to suppression of the increase of the electrical resistivity. From an industrial point of view, we introduced cyclic metal organic chemical vapor deposition (MOCVD) in order to control Al concentration in the Cu film more easily by controlling the delivery time ratio of Cu and Al precursors. The amount of alloying element could be lowered at level of below 1 at%. Process of the alloy formation was applied into gap-filling to evaluate the performance of the gap-filling. Voidless gap-filling even into high aspect ratio trenches was achieved. In-depth analysis will be discussed in detail.

  • PDF

The effect of plamsa treatment on superconformal copper gap-fill

  • Mun, Hak-Gi;Kim, Seon-Il;Park, Yeong-Rok;Lee, Nae-Eung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.249-249
    • /
    • 2010
  • The effect of forming a passivation layer was investigated in superconformal Cu gap-filling of the nano-scale trench with atomic-layer deposited (ALD)-Ru glue layer. It was discovered that the nucleation and growth of Cu during metal-organic chemical vapor deposition (MOCVD) were affected by hydrogen plasma treatments. Specifically, as the plasma pretreatment time increased, Cu nucleation was suppressed proportionally. XPS and Thermal Desorption Spectroscopy indicated that hydrogen atoms passivate the Ru surface, which leads to suppression of Cu nucleation owing to prevention of adsorption of Cu precursor molecules. For gap-fill property, sub 60-nm ALD Ru trenches without the plasma pretreatment was blocked by overgrown Cu after the Cu deposition. With the plasma pretreatment, superconformal gap filling of the nano-scale trenches was achieved due to the suppression of Cu nucleation near the entrances of the trenches. Even the plasma pretreatment with bottom bias leads to the superconformal gap-filling.

  • PDF

Simulation of injection-compression molding for thin and large battery housing

  • Kwon, Young Il;Lim, Eunju;Song, Young Seok
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1451-1457
    • /
    • 2018
  • Injection compression molding (ICM) is an advantageous processing method for producing thin and large polymeric parts in a robust manner. In the current study, we employed the ICM process for an energy-related application, i.e., thin and large polymeric battery case. A mold for manufacturing the battery case was fabricated using injection molding. The filling behavior of molten polymer in the mold cavity was investigated experimentally. To provide an in-depth understanding of the ICM process, ICM and normal injection molding processes were compared numerically. It was found that the ICM had a relatively low filling pressure, which resulted in reduced shrinkage and warpage of the final products. Effect of the parting line gap on the ICM characteristics, such as filling pressure, clamping force, filling time, volumetric shrinkage, and warpage, was analyzed via numerical simulation. The smaller gap in the ICM parting line led to the better dimensional stability in the finished product. The ICM sample using a 0.1 mm gap showed a 76% reduction in the dimensional deflection compared with the normal injection molded part.

The Potential of IPTV Service: Is It a Bridging or Gap-filling Telecommunication Service? (기존 신규 방송통신서비스 분석을 통한 IPTV 서비스의 성장가능성 연구)

  • Lee, Hyeongjik;Kim, Kyoungtae;Jeong, Bo Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.525-528
    • /
    • 2009
  • This paper attempts to conceptually examine the potential of IPTV(Internet Protocol Television). First, this paper reviews the concept of a bridging telecommunication service and a gap-filling telecommunications service. Second, the current status of various emerging telecommunications services including mobile WiMax, called WiBro, and both satellite and terrestrial digital multimedia broadcasting service, called DMB are comprehensively analyzed. Based on those analysis, this paper analyzes whether IPTV is regared as a bridging telecommunications service or a gap-filling telecommunications service and examine the potential growth possibility of IPTV. Finally, the suggestions for policy makers are discussed.

  • PDF

Superconformal gap-filling of nano trenches by metalorganic chemical vapor deposition (MOCVD) with hydrogen plasma treatment

  • Moon, H.K.;Lee, N.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.246-246
    • /
    • 2010
  • As the trench width in the interconnect technology decreases down to nano-scale below 50 nm, superconformal gap-filling process of Cu becomes very critical for Cu interconnect. Obtaining superconfomral gap-filling of Cu in the nano-scale trench or via hole using MOCVD is essential to control nucleation and growth of Cu. Therefore, nucleation of Cu must be suppressed near the entrance surface of the trench while Cu layer nucleates and grows at the bottom of the trench. In this study, suppression of Cu nucleation was achieved by treating the Ru barrier metal surface with capacitively coupled hydrogen plasma. Effect of hydrogen plasma pretreatment on Cu nucleation was investigated during MOCVD on atomic-layer deposited (ALD)-Ru barrier surface. It was found that the nucleation and growth of Cu was affected by hydrogen plasma treatment condition. In particular, as the plasma pretreatment time and electrode power increased, Cu nucleation was inhibited. Experimental data suggests that hydrogen atoms from the plasma was implanted onto the Ru surface, which resulted in suppression of Cu nucleation owing to prevention of adsorption of Cu precursor molecules. Due to the hydrogen plasma treatment of the trench on Ru barrier surface, the suppression of Cu nucleation near the entrance of the trenches was achieved and then led to the superconformal gap filling of the nano-scale trenches. In the case for without hydrogen plasma treatments, however, over-grown Cu covered the whole entrance of nano-scale trenches. Detailed mechanism of nucleation suppression and resulting in nano-scale superconformal gap-filling of Cu will be discussed in detail.

  • PDF