• Title/Summary/Keyword: Gamma-aminobutyric acid (GABA)

Search Result 309, Processing Time 0.031 seconds

Ethanol Extract of Polygalae Radix Augments Pentobarbital-Induced Sleeping Behaviors through $GABA_Aergic$ Systems

  • Lee, Chung-Il;Lee, Mi Kyeong;Oh, Ki-Wan
    • Natural Product Sciences
    • /
    • v.19 no.2
    • /
    • pp.179-185
    • /
    • 2013
  • Polygalae radix (PR) has traditionally been used as a sedative and anti-stress agent in oriental countries for a long time. PR which contains many ingredients is especially rich in saponins. This study was performed to investigate whether ethanol extract of PR enhances pentobarbital-induced sleep behaviors. In addition, possible mechanisms also were investigated. PR inhibited locomotor activity in mice. PR increased sleep rate and sleep time by concomitant administration with sub-hypnotic dose of pentobarbital (28 mg/kg). PR prolonged total sleeping time, and shortened sleep latency induced by pentobarbital (42 mg/kg). In addition, PR increased intracellular chloride concentration in primary cultured neuronal cells. The expression level of glutamic acid decarboxylase (GAD) were increased, and ${\gamma}$-aminobutyric acid $(GABA)_A$ receptors subunits were modulated by PR, especially increasing ${\gamma}$-subunit expression. In conclusion, PR augments penobarbital-induced sleep behaviors through activation of $GABA_A$ receptors and chloride channel complex.

Physiological Characteristics and GABA Production of Lactobacillus plantarum K255 Isolated from Kimchi

  • Park, Sun-Young;Kim, Kee-Sung;Lee, Myung-Ki;Lim, Sang-Dong
    • Food Science of Animal Resources
    • /
    • v.33 no.5
    • /
    • pp.595-602
    • /
    • 2013
  • As a major inhibitory neurotransmitter of the central nervous system in animals, ${\gamma}$-aminobutyric acid (GABA) has several physiological functions, such as anti-hypertensive, diuretic, tranquilizer and anti-stress effects in human. In order to determine strains with high GABA producing ability and glutamate decarboxylase (GAD) activity, 273 bacteria were isolated from various types of Kimchi. Strain K255 contained $386.37{\mu}g/mL$ of GABA in MRS broth containing 1% MSG, $600.63{\mu}g/mL$ of GABA in MRS broth containing 2% MSG and $821.24{\mu}g/mL$ of GABA in MRS broth containing 3% MSG. It showed that K255 had the highest GABA production ability compared to other commercial lactic acid bacteria. K255 was identified as Lactobacillus plantarum based on its API carbohydrate fermentation pattern and 16S rDNA sequence. K255 was investigated for its physiological characteristics. The optimum growth temperature of K255 was $37^{\circ}C$and cultures took 13 h to reach the pH 4.4. K255 showed more sensitive to bacitracin in a comparison of fifteen different antibiotics, and showed most resistance to kanamycin and vancomycin. Moreover, it was comparatively tolerant to bile juice and acid and displayed resistance to Escherichia coli, Salmonella Typhimurium, Staphylococcus aureus, with rates of 30.8%, 29.7%, and 23.4% respectively. These results demonstrate that K255 could be an excellent strain for the production of functional products.

Effects of ${\gamma}-Aminobutyric$ Acid on Pancreatic Amylase Secretion Evoked by Sodium Oleate in Anesthetized Rats

  • Park, Yong-Deuk;Cui, Zheng-Yun;Park, Hyung-Seo;Park, Hyoung-Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.6 no.1
    • /
    • pp.27-31
    • /
    • 2002
  • ${\gamma}-Aminobutyric$ Acid (GABA) is contained in pancreatic islet ${\beta}-cells$ although its physiological role in pancreatic exocrine function is completely unknown at the present time. Recently, we have reported that exogenous GABA enhances secretagogue-evoked exocrine secretion in the isolated, perfused rat pancreas. This study was aimed to investigate an effect of exogenous GABA on pancreatic exocrine secretion in vivo evoked by intestinal stimulation. Rats were anesthetized with urethane (1.4 g/kg) after 24-h fast with free access to water. GABA $(10,\;30\;and\;100\;{\mu}mol/kg/h),$ given intravenously, did not change spontaneous pancreatic amylase secretion but dose-dependently elevated the amylase secretion evoked by intraduodenal sodium oleate (0.05 mmol/h). GABA $(30\;{\mu}mol/kg/h)$ also further increased the amylase secretion stimulated by CCK (30 pmol/kg/h) plus secretin (20 pmol/kg/h) but failed to modify the amylase secretion induced by secretin alone. GABA $(10,\;30\;and\;100\;{\mu}mol/kg/h)$ also dose-dependently elevated pancreatic amylase secretion evoked by CCK alone. Bicuculline $(100\;{\mu}mol/kg/h),$ a $GABA_A-receptor$ antagonist, markedly reduced the GABA-enhanced pancreatic responses to sodium oleate, CCK plus secretin or CCK alone. The results indicate that GABA enhances the sodium oleate-evoked pancreatic amylase secretion via $GABA_A-receptor$ in anesthetized rats, which may account for elevating the action of CCK released by sodium oleate.

(γ-Aminobutyric Acid Transporter 2 Binds to the PDZ Domain of Mammalian Lin-7 ((γ-Aminobutyric acid transporter 2와 mammalian Lin-7의 PDZ결합)

  • Seog, Dae-Hyun;Moon, II-Soo
    • Journal of Life Science
    • /
    • v.18 no.7
    • /
    • pp.940-946
    • /
    • 2008
  • Neurotransmitter transporters, which remove neurotransmittesr from the synaptic cleft, are regulated by second messenger such as protein kinases and binding proteins. Neuronal ${\gamma}-aminobutyric$ acid transporters (GATs) are responsible for removing the inhibitory neurotransmitter ${\gamma}-aminobutyric$ acid (GABA) from the synaptic cleft. ${\gamma}-aminobutyric$ acid transporters 2 (GAT2/BGT1) is involved in regulating neurotransmitter recycling, but the mechanism how they are stabilized and regulated by the specific binding protein has not yet been elucidated. Here, we used the yeast two-hybrid system to identify the specific binding protein(s) that interacts with the C-terminal region of GAT2 and found a specific interaction with the mammalian LIN-7b (MALS-2). MALS-2 protein bound to the tail region of GAT2 but not to other GAT members in the yeast two-hybrid assay. The "T-X-L" motif at the C-terminal end of GAT2 is essential for interaction with MALS-2. In addition, this protein showed specific interactions in the glutathione S-transferase (GST) pull-down assay. An antibody to GAT2 specifically co-immunoprecipitated MALS associated with GAT2 from mouse brain extracts. These results suggest that MALS may stabilize GAT2 in brain.

Variations in Physicochemical Properties of Brown Rice (Oryza sativa L.) During Storage

  • Lee, Jin-Hwan;Oh, Sea-Kwan;Cho, Kye-Man;Seo, Woo-Duck;Choung, Myoung-Gun
    • Food Science and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1398-1403
    • /
    • 2009
  • Present study deals with variations of physicochemicals including $\gamma$-aminobutyric acid (GABA), $\gamma$-oryzanol, free sugar, lipoxygenase activity, fat acidity, and germination rate from Korean brown rice cultivars. With increase of storage time and temperature, GABA, $\gamma$-oryzanol, lipoxygenase activity, and fat acidity increased, whereas free sugar and germination rate was reduced. Among cultivars, 'Gopumbyeo' exhibited the highest contents in GABA and $\gamma$-oryzanol during 12 weeks storage at $25^{\circ}C$ (GABA: $28.6{\pm}5.6{\rightarrow}170.4{\pm}4.6\;mg/100\;g$, $\gamma$-oryzanol: $6.1{\pm}0.7{\rightarrow}6.7{\pm}0.4\;mg/g$) and 'Ilpumbyeo' significantly decreased in free sugar during 12 weeks storage at $10^{\circ}C$ ($1,423.7{\rightarrow}1,058.4\;mg/100\;g$). Moreover, 'Taebongbyeo' exhibited the highest quality owing to low lipoxygenase activity, low fat acidity, and high germination rate. In free sugar compositions, sucrose exhibited the highest content (>70%), followed by fructose (>7%), raffinose (>5%), glucose (>3%), and maltose (>2%) during storage. Based on our results, changes of physicochemicals in stored brown rice may be important information in processing food and functional properties.

Production and Characterization of GABA Rice Yogurt

  • Park, Ki-Bum;Oh, Suk-Heung
    • Food Science and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.518-522
    • /
    • 2005
  • Yogurt containing high ${\gamma}$-aminobutyric acid (GABA) was developed using lactic acid bacteria and germinated brown rice. Lactobacillus acidophilus, L. plantarum, and L. brevis OPY-1 strains were inoculated into Lactobacillus MRS broth for use as yogurt starter. After treatment with 5% monosodium glutamate in MRS broth, L. brevis OPY-1 strain isolated from Kimchi produced GABA concentration of 8,003.28 nmol/mL. Starter was inoculated into fermentation substrate mixture containing germinated brown rice extract and blend of powdered whole milk and skim milk. Samples were incubated, and viable cell colonies were counted. Highest number of lactic acid bacteria was reached between 16 and 20 hr. Concentrated rice milk fermented with high GABA-producing strain contained GABA concentrations of $137.17\;{\mu}g/g$ D.W., whereas concentrated fermented milk prepared by conventional method contained GABA of $1.29\;{\mu}g/g$ D.W. Sensory evaluation panelists gave favorable ratings to fermented rice milk containing high GABA concentration.

Preparation and Characterization of Double-Layered Coated Capsule Containing Low Molecular Marine Collagen and γ-Aminobutyric Acid Producing Lactobacillus brevis CFM20 (저분자 해양성 콜라겐과 γ-Aminobutyric Acid 생성 Lactobacillus brevis CFM20을 함유하는 이중코팅캡슐의 제조 및 특성)

  • Kim, Sun-Yeong;Oh, Do-Geon;Kim, Kwang-Yup
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.7
    • /
    • pp.857-867
    • /
    • 2017
  • This study was performed to encapsulate low molecular weight marine collagen and ${\gamma}$-aminobutyric acid (GABA)-producing lactic acid bacteria to inhibit degradation and improve survival rate during exposure to adverse conditions of the gastro-intestinal tract. Calcium-alginate method was used for the manufacture of a double-layered coated capsule. The inner core material was composed of collagen and lactic acid bacteria, and the coating materials were alginate and chitosan. The sizes and shapes of the double-coated capsule were affected mainly by centrifuge speed and pH. Manufactured capsules were observed with a scanning electron microscope and by confocal laser scanning microscopy to confirm the micromorphological changes of capsules and bacterial cells. As a result, double-layered coated capsules were not degraded at pH 1.2, whereas degradation occurred at pH 7.4. In addition, GABA and collagen were maintained in stable state at pH 1.2. Therefore, double-layered coated capsules developed in this study would not be degraded in the stomach and could be stably delivered to the small intestine to benefit intestinal and dermatic health.

Effect of γ-aminobutyric acid producing bacteria on in vitro rumen fermentation, growth performance, and meat quality of Hanwoo steers

  • Mamuad, Lovelia L.;Kim, Seon Ho;Ku, Min Jung;Lee, Sang Suk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.7
    • /
    • pp.1087-1095
    • /
    • 2020
  • Objective: The present study aimed to evaluate the effects of γ-aminobutyric acid (GABA)-producing bacteria (GPB) on in vitro rumen fermentation and on the growth performance and meat quality of Hanwoo steers. Methods: The effects of GPB (Lactobacillus brevis YM 3-30)-produced and commercially available GABA were investigated using in vitro rumen fermentation. Using soybean meal as a substrate, either GPB-produced or commercially available GABA were added to the in vitro rumen fermentation bottles, as follows: control, no additive; T1, 2 g/L GPB; T2, 5 g/L GPB; T3, 2 g/L autoclaved GPB; T4, 5 g/L autoclaved GPB; T5, 2 g/L GABA; and T6, 5 g/L GABA. In addition, 27 Hanwoo steers (602.06±10.13 kg) were subjected to a 129-day feeding trial, during which they were fed daily with a commercially available total mixed ration that was supplemented with different amounts of GPB-produced GABA (control, no additive; T1, 2 g/L GPB; T2, 5 g/L GPB). The degree of marbling was assessed using the nine-point beef marbling standard while endotoxin was analyzed using a Chromo-Limulus amebocyte lysate test. Results: In regard to in vitro rumen fermentation, the addition of GPB-produced GABA failed to significantly affect pH or total gas production but did increase the ammonia nitrogen (NH3-N) concentration (p<0.05) and reduce total biogenic amines (p<0.05). Animals fed the GPB-produced GABA diet exhibited significantly lower levels of blood endotoxins than control animals and yielded comparable average daily gain, feed conversion ratio, and beef marbling scores. Conclusion: The addition of GPB improved in vitro fermentation by reducing biogenic amine production and by increasing both antioxidant activity and NH3-N production. Moreover, it also reduced the blood endotoxin levels of Hanwoo steers.

γ-aminobutyric Acid Content in House Rat and Fowl Brain (집쥐와 닭 뇌의 γ-Aminobutyric acid 함량)

  • Huh, Rhin Sou
    • Korean Journal of Veterinary Research
    • /
    • v.11 no.1
    • /
    • pp.59-63
    • /
    • 1971
  • Current interest in ${\gamma}$-aminobutyric acid (GABA) has arisen from the convergence of several independent line of investigation leading to the demonstration that this and related substances are normal products of brain metabolism and that GABA has an important physiological action upon brain function as well as upon certain peripheral nervous structures. The interest for neurophysiologists has been enhanced by the importance of the discovery for the role of humoral mediator of synaptic transmission or regulator of neuronal activity in the central nervous system, particularly if it may shed some elight upon the nature of central inhibitory processes. In accordance with such an interest and importance, this work was performed in order to standardize the normal content as a preliminary investigation of so-called night active and daytime active animals GABA content in their brains when they are exposed to light and darkness. The method, through which the estimation has made in this work, was paper chromatographic method developed by Maynert and Klingman for the estimation of GABA content in animal tissues. The results obtained are summerized as follows: 1) GABA content in the cerebral cortex of house rat ranged from 90 to $310{\mu}g/gm$ of wet weight. 2) The content of GAGA ranging from 130 to $510{\mu}g/gm$ of wet weight was occurred from midbrain of the rat. 3) GABA content was ranged from 30 to $150 {\mu}g/gm$ of wet weight of the rat cerebellum. 4) The contents of fowl cerebral cortex, midbrain, and cerebellum are estimated as ranging 230-590, 250-620, $50-280{\mu}g/gm$ of wet weight, respectively. As a result, it may be concluded that among three brain tissues of both animals the midbrain is the highest region in GABA content. Fowl brain, on the other side, contains more higher GABA content than the house rat brain does.

  • PDF

The Effect of γ-Aminobutyric Acid Intake on UVB- Induced Skin Damage in Hairless Mice

  • Hairu Zhao;Bomi Park;Min-Jung Kim;Seok-Hyun Hwang;Tae-Jong Kim;Seung-Un Kim;Iksun Kwon;Jae Sung Hwang
    • Biomolecules & Therapeutics
    • /
    • v.31 no.6
    • /
    • pp.640-647
    • /
    • 2023
  • The skin, the largest organ in the body, undergoes age-related changes influenced by both intrinsic and extrinsic factors. The primary external factor is photoaging which causes hyperpigmentation, uneven skin surface, deep wrinkles, and markedly enlarged capillaries. In the human dermis, it decreases fibroblast function, resulting in a lack of collagen structure and also decreases keratinocyte function, which compromises the strength of the protective barrier. In this study, we found that treatment with γ-aminobutyric acid (GABA) had no toxicity to skin fibroblasts and GABA enhanced their migration ability, which can accelerate skin wound healing. UVB radiation was found to significantly induce the production of matrix metalloproteinase 1 (MMP-1), but treatment with GABA resulted in the inhibition of MMP-1 production. We also investigated the enhancement of filaggrin and aquaporin 3 in keratinocytes after treatment with GABA, showing that GABA can effectively improve skin moisturization. In vivo experiments showed that oral administration of GABA significantly improved skin wrinkles and epidermal thickness. After the intake of GABA, there was a significant decrease observed in the increase of skin thickness measured by calipers and erythema. Additionally, the decrease in skin moisture and elasticity in hairless mice exposed to UVB radiation was also significantly restored. Overall, this study demonstrates the potential of GABA as functional food material for improving skin aging and moisturizing.