• Title/Summary/Keyword: Gamma neuron

Search Result 26, Processing Time 0.039 seconds

Modulation of $GABA_A$ Receptor by Protein Kinase C in Autonomic Major Pelvic Ganglion Neurons

  • Choi, Yeun-Jong;Cha, Seung-Kyu;Kim, Dae-Ran;Kong, In-Deok
    • Biomedical Science Letters
    • /
    • v.14 no.2
    • /
    • pp.69-76
    • /
    • 2008
  • ${\gamma}$-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the central nervous system, and its actions are mediated by subtypes of GABA receptors named as $GABA_A$, $GABA_B,\;and\;GABA_C,\;GABA_A$, receptor consisting of ${\alpha},\;{\beta},\;{\gamma}\;and\;{\delta}$ subunits is a heterooligomeric ligand-gated chloride channel. This study was performed to investigate regulation of $GABA_A$ receptor by protein kinase C(PKC). Ion currents were recorded using gramicidine-perforated patch and whole cell patch clamp. mRNA encoding the subunits of PKC expressed in major pelvic ganglion (MPG) neurons was detected by using RT-PCR. The GABA-induced inward current was increased by PKC activators and decreased by PKC inhibitors, respectively. These effects were not associated with intracellular $Ca^{2+}$ and GAG (1-oleoyl-2-acetyl-sn-glycerol), a membrane permeable diacylglycerol (DAG) analogue. These results mean that the subfamily of PKC participating in activation of $GABA_A$ receptor would be an atypical PKC (aPKC). Among theses, ${\xi}$ isoform of aPKC was detected by RT-PCR. Taking together, we suggest that excitable $GABA_A$ receptor in sympathetic MPG neuron seemed to be regulated by aPKC, particular in ${\xi}$ isoform. The regulatory roles of PKC on excitatory $GABA_A$ receptors in sympathetic neurons of MPG may be an important factor to control the functional activity of various pelvic organs such as bowel movement, micturition and erection.

  • PDF

Effects of ${\gamma}-Aminobutyric$ Acid on Intrinsic Cholinergic Action in Exocrine Secretion of Isolated, Perfused Rat Pancreas

  • Park, Yong-Deuk;Park, Hyung-Seo;Cui, Zheng-Yun;Park, Hyoung-Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.3
    • /
    • pp.169-174
    • /
    • 2003
  • ${\gamma}$-Aminobutyric acid (GABA) has been reported to enhance exocrine secretion evoked not only by secretagogues but also by intrinsic neuronal excitation in the pancreas. The pancreas contains cholinergic neurons abundantly that exert a stimulatory role in exocrine secretion. This study was undertaken to examine effects of GABA on an action of cholinergic neurons in exocrine secretion of the pancreas. Intrinsic neurons were excited by electrical field stimulation (EFS; 15 V, 2 msec, 8 Hz, 45 min) in the isolated, perfused rat pancreas. Tetrodotoxin or atropine was used to block neuronal or cholinergic action. Acetylcholine was infused to mimic cholinergic excitation. GABA $(30{\mu}M)$ and muscimol $(10{\mu}M)$, given intra-arterially, did not change spontaneous secretion but enhanced cholecystokinin (CCK; 10 pM)-induced secretions of fluid and amylase. GABA (3, 10, $30{\mu}M$) further elevated EFS-evoked secretions of fluid and amylase dose-dependently. GABA (10, 30, $100{\mu}M$) also further increased acetylcholine $(5{\mu}M)$-induced secretions of fluid and amylase in a dose-dependent manner. Bicuculline $(10{\mu}M)$ effectively blocked the enhancing effects of GABA $(30{\mu}M)$ on the pancreatic secretions evoked by either EFS or CCK. Both atropine $(2{\mu}M)$ and tetrodotoxin $(1{\mu}M)$ markedly reduced the GABA $(10{\mu}M)$-enhanced EFS- or CCK-induced pancreatic secretions. The results indicate that GABA enhances intrinsic cholinergic neuronal action on exocrine secretion via the $GABA_A$ receptors in the rat pancreas.

GABAergic neuronal development in the embryonic mesencephalon of mice

  • Kim, Mun-Ki;Lee, Si-Joon;Vasudevan, Anju;Won, Chung-Kil
    • Korean Journal of Veterinary Research
    • /
    • v.59 no.4
    • /
    • pp.201-205
    • /
    • 2019
  • This study presents neurogenesis and neuronal migration patterns of gamma-aminobutyric acid-ergic (GABAergic) neurons during mesencephalic development of mouse. After neurons from embryonic day (E) 10-16 were labelled by a single injection of 5-bromo-2'-deoxyuridine (BrdU), immunohistochemistry was performed. Neurogenesis were mainly generated in the mesencephalic region at E10 to E13. After E14, BrdU positive cells were observed only in the dorsal mesencephalon. GABAergic neurons were mainly originated in the ventrolateral region of the mesencephalon at the early embryonic stage, especially at E11 to E13. E10-labeled cells showed positive for GABAergic neuron in the basal plate of the mesencephalon at E13. At E15, GABAergic neurons were observed in the entire basal plate and some regions of the ventral and dorsal mesencephalon. They were present in the whole basal plate, the ventral and dorsal mesencephalon of E17, spreading more outward of the mesencephalon at P0. Our study demonstrates that major neurogenesis of GABAergic neurons occurs at E11 to E13. However, neuronal migration continues until neonatal period during mesencephalic development.

Increased Production of γ-Aminobutyric Acid from Brewer's Spent Grain through Bacillus Fermentation

  • Tao Kim;Sojeong Heo;Hong-Eun Na;Gawon Lee;Jong-Hoon Lee;Ji-Yeon Kim;Do-Won Jeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.4
    • /
    • pp.527-532
    • /
    • 2023
  • Brewer's spent grain (BSG) is a waste product of the beer industry, and γ-aminobutyric acid (GABA) is a physiologically active substance important for brain and neuron physiology. In this study, we used the bacterial strains Bacillus velezensis DMB06 and B. licheniformis 0DA23-1, respectively, to ferment BSG and produce GABA. The GABA biosynthesis pathways were identified through genomic analysis of the genomes of both strains. We then inoculated the strains into BSG to determine changes in pH, acidity, reducing sugar content, amino-type nitrogen content, and GABA production, which was approximately doubled in BSG inoculated with Bacillus compared to that in uninoculated BSG; however, no significant difference was observed in GABA production between the two bacterial strains. These results provide the experimental basis for expanding the use of BSG by demonstrating the potential gain in increasing GABA production from a waste resource.

The Changes of Cyclic AMP Content by Opiates in Chronic Haloperidol Treated Mouse Striatum (Haloperidol 장기 투여된 Mouse Striatum에서 cAMP양에 미치는 Opiates의 영향)

  • Kim, Soo-Kyung
    • The Korean Journal of Pharmacology
    • /
    • v.30 no.1
    • /
    • pp.11-18
    • /
    • 1994
  • Cyclic adenosine 3'5'-monophosphate (cyclic AMP) has been frequently accepted as an intracellular messenger for receptor-mediated action of opioids. In this experiment, it was designed to determine the interaction of dopaminergic and opioidergic system in the mouse striatum in normal and chronic haloperidol treated groups. Haloperidol 750ug/kg I.P. for 10 days was performed for dopamine denervation. The morphine, DAGO, DPDPE, and U5O,488H inhibited the increase of haloperidol-induced cyclic AMP content in chronic haloperidol treated mouse striatum. The inhibition of DAGO and DPDPE showed significant increase compared to normal mouse striatum. Naloxone showed antagonistic effect on the morphine and U5O,488H in chronic haloperidol treated group, and showed antagonistic effect on morphine, DAGO, DPDPE, and U5O, 488H in normal mouse striatum. These findings support that there is a functional interrelationship of dopaminergic and opioidergic pathway in the striatum. This result provides an evidence that following destruction of striatal dopaminergic neuron, there are some changes of cAMP content on the ${\mu},\;{\gamma},\;and\;{\kappa}$ opioid receptor, but the ${\kappa}$ opioid receptor still has its function.

  • PDF

Effect of Propofol on Ion Channels in Acutely Dissociated Dorsal Raphe Neuron of Sprague-Dawley Rats

  • Lee, Bong-Jae;Kwon, Moo-ll;Shin, Min-Chul;Kim, Youn-Jung;Kim, Chang-Ju;Kim, Soon-Ae;Kim, Ee-Hwa;Chung, Joo-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.2
    • /
    • pp.189-197
    • /
    • 2001
  • To investigate propofol's effects on ionic currents induced by ${\gamma}-aminobutyric$ acid (GABA) and glycine as well as on those produced by the nicotinic acetylcholine- and glutamate-responsive channels, rat dorsal raphe neurons were acutely dissociated and the nystatin-perforated patch-clamp technique under voltage-clamp conditions was used to observe their responses to the administration of propofol. Propofol evoked ion currents in a dose-dependent manner, and propofol $(10^{-4}\;M)$ was used to elicit ion currents through the activation of $GABA_A,$ glycine, nicotinic acetylcholine and glutamate receptors. Propofol at a clinically relevant concentration $(10^{-5}\;M)$ potentiated $GABA_A-,$ glycine- and NMDA receptor-mediated currents. The potentiating action of propofol on $GABA_A-,$ glycine- and NMDA receptor-mediated responses involved neither opioid receptors nor G-proteins. Apparently, propofol modulates inhibitory and excitatory neurotransmitter-activated ion channels either by acting directly on the receptors or by potentiating the effects of the neurotransmitters, and this modulation appears to be responsible for the majority of the anaesthetic and/or adverse effects.

  • PDF

Electrically Stimulated Relaxation is not Mediated by GABA in Cat Lower Esophageal Sphincter Muscle

  • Park Sun-Young;Shin Chang-Yell;Song Hyun-Ju;Min Young-Sil;La Hyen-O;Lee Jun-Woo;Kim Do-Young;Je Hyun-Dong;Sohn Uy-Dong
    • Archives of Pharmacal Research
    • /
    • v.29 no.5
    • /
    • pp.400-404
    • /
    • 2006
  • This study examined the effect of Gamma-Amino butyric acid (GABA) and selective GABA receptor related drugs on the electrically stimulated relaxation in the lower esophageal sphincter muscle (LES) of a cat. Tetrodotoxin $(10^{-6}\;M)$ suppressed the electrically stimulated (0.5-5 Hz) relaxation of the LES. However, guanethidine $(10^{-6}\;M)$ and atropine $(10^{-6}\;M)$ had no effect indicating that the relaxations were neurally mediated via the nonadrenergic and noncholinergic (NANC) pathways. NG-nitro-L-arginine methyl ester ($10^{-4}M$, L-NAME) also inhibited the relaxant response but did not completely abolish the electrically stimulated relaxation with 60% inhibition, which suggests the involvement of nitric oxide as an inhibitory transmitter. This study examined the role of GABA, an inhibitory neurotransmitter, on neurally mediated LES relaxation. GABA ($10^{-3}-10^{-5}M$, non selective receptor agonist), muscimol ($10^{-3}-10^{-5}M$, GABA-A agonist), and baclofen ($10^{-3}-10^{-5}M$, GABA-B agonist) had no significant effect on the electrically stimulated relaxation. Moreover, bicuculline ($10^{-5}M$, GABA-A antagonist) and phaclofen ($10^{-5}M$, GABA-B antagonist) had no inhibitory effect on the electrically stimulated relaxation. This suggests that GABA and the GABA receptor are not involved in the electrically stimulated NANC relaxation in the cat LES.

Korean Red Ginseng Extract Activates Non-NMDA Glutamate and GABAA Receptors on the Substantia Gelatinosa Neurons of the Trigeminal Subnucleus Caudalis in Mice

  • Yin, Hua;Park, Seon-Ah;Park, Soo-Joung;Han, Seong-Kyu
    • Journal of Ginseng Research
    • /
    • v.35 no.2
    • /
    • pp.219-225
    • /
    • 2011
  • Korean red ginseng (KRG) is a valuable and important traditional medicine in East Asian countries and is currently used extensively for botanical products in the world. KRG has both stimulatory and inhibitory effects on the central nervous system (CNS) suggesting its complicated action mechanisms. The substantia gelatinosa (SG) neurons of the trigeminal subnucleus caudalis (Vc) are involved in orofacial nociceptive processing. Some studies reported that KRG has antinociceptive effects, but there are few reports of the functional studies of KRG on the SG neurons of the Vc. In this study, a whole cell patch clamp study was performed to examine the action mechanism of a KRG extract on the SG neurons of the Vc from juvenile mice. KRG induced short-lived and repeatable inward currents on all the SG neurons tested in the high chloride pipette solution. The KRG-induced inward currents were concentration dependent and were maintained in the presence of tetrodotoxin, a voltage gated $Na^+$ channel blocker. The KRG-induced inward currents were suppressed by 6-cyano-7-nitroquinoxaline-2,3-dione, a non-N-methyl-D-aspartate (NMDA) glutamate receptor antagonist and/or picrotoxin, a gamma-aminobutyric acid $(GABA)_A$ receptor antagonist. However, the inward currents were not suppressed by d,l-2-amino-5-phosphonopentanoic acid, an NMDA receptor antagonist. These results show that KRG has excitatory effects on the SG neurons of the Vc via the activation of non-NMDA glutamate receptor as well as an inhibitory effect by activation of the $GABA_A$ receptor, indicating the KRG has both stimulatory and inhibitory effects on the CNS. In addition, KRG may be a potential target for modulating orofacial pain processing.

Upregulation of Dendritic Arborization by N-acetyl-D-Glucosamine Kinase Is Not Dependent on Its Kinase Activity

  • Lee, HyunSook;Dutta, Samikshan;Moon, Il Soo
    • Molecules and Cells
    • /
    • v.37 no.4
    • /
    • pp.322-329
    • /
    • 2014
  • N-acetylglucosamine kinase (GlcNAc kinase or NAGK; EC 2.7.1.59) is highly expressed and plays a critical role in the development of dendrites in brain neurons. In this study, the authors conducted structure-function analysis to verify the previously proposed 3D model structure of GlcNAc/ATP-bound NAGK. Three point NAGK mutants with different substrate binding capacities and reaction velocities were produced. Wild-type (WT) NAGK showed strong substrate preference for GlcNAc. Conversion of Cys143, which does not make direct hydrogen bonds with GlcNAc, to Ser (i.e., C143S) had the least affect on the enzymatic activity of NAGK. Conversion of Asn36, which plays a role in domain closure by making a hydrogen bond with GlcNAc, to Ala (i.e., N36A) mildly reduced NAGK enzyme activity. Conversion of Asp107, which makes hydrogen bonds with GlcNAc and would act as a proton acceptor during nucleophilic attack on the ${\gamma}$-phosphate of ATP, to Ala (i.e., D107A), caused a total loss in enzyme activity. The overexpression of EGFP-tagged WT or any of the mutant NAGKs in rat hippocampal neurons (DIV 5-9) increased dendritic architectural complexity. Finally, the overexpression of the small, but not of the large, domain of NAGK resulted in dendrite degeneration. Our data show the effect of structure on the functional aspects of NAGK, and in particular, that the small domain of NAGK, and not its NAGK kinase activity, plays a critical role in the upregulation of dendritogenesis.

Inhibitory Effects of ${\gamma}$-Aminobutyric Acid on the Contractility of Isolated Rat Vas Deferens (흰쥐의 적출 정관 수축성에 대한 ${\gamma}$-Aminobutyric Acid의 억제작용)

  • Ahn, Ki-Young;Kwon, Oh-Cheol;Ha, Jeoung-Hee;Lee, Kwang-Youn;Kim, Won-Joon
    • Journal of Yeungnam Medical Science
    • /
    • v.9 no.2
    • /
    • pp.382-395
    • /
    • 1992
  • GABA is an inhibitory neurotransmitter in central nervous system and produce sedative, antianxiety and muscle reaxing effects via $GABA_A$ receptor or $GABA_B$ receptor. Recently it is known that GABA is widely distributed throughout peripheral organs and may playa physiological role in certain organ. The vas deferens is innervated by species-difference. These study, therefore, was performed to investigate the mode and the mechanism of action of GABA on the norepiniphrine-, ATP- and electric stimulation-induced contraction of vas deferens of rat. Sprague-Dawley rats were sacrificed by cervical dislocation. The smooth muscle strips were isolated from the prostastic portion and were mounted in the isolated muscle bath. PSS in the bath was aerated with 95/5%-$O_2/CO_2$ at $33^{\circ}C$. Muscle tensions were measured by isometric tension transducer and were recorded by biological recording system. 1. GABA, muscimol, a $GAB_A$ agonist, and baclofen, a $GABA_B$ agonist inhibited the electric field stimulation(EFS, 0.2Hz, 1mSec, 80 V, monophasic square wave)-induced contraction with a rank order of potency of GABA greater than baclofen greater than muscimol. 2. The inhibitory effect of GABA was antagonized by delta aminovaleric acid(DAVA), a $GABA_B$ antagonist, but not by bicuculline, a $GABA_A$ mtagonist. 3. The inhibitory effect of baclofen was antagonized by DAVA, but the effect of muscimol was not antagonized by bicuculline. 4. Exogenous norepinephrine(NE) and ATP contracted muscle strip concentration dependently, but the effect of acetylcholine was negligible : and GABA did not affect the NE-and ATP-induced contractions. 5. GABA, baclofen and muscimol did not affect basal tone, and GABA did not affect the NE-and ATP-induced contractionsm 6. EFS-induced contraction was including 2 distinctable components. The first phasic component was inhibited by beta gamma-methylene ATP(mATP), a desensitizing agent of APT receptor and the second tonic component was reduced by pretreatment of reserpine(3 mg/Kg, IP). 7. GABA inhibited the EFS-induced contraction of reserpinized strips, but not the mATP-treated strips. These results suggest that in the prostatic portion of the rat vas deferens, adrenergic and purinergic neurotransmissions are exist, and GABA inhibits the release of ATP via presynaptic $GABA_B$ receptor on the excitatory neurons.

  • PDF