• Title/Summary/Keyword: Gamma 확률과정

Search Result 22, Processing Time 0.021 seconds

A Study of Option Pricing Using Variance Gamma Process (Variance Gamma 과정을 이용한 옵션 가격의 결정 연구)

  • Lee, Hyun-Eui;Song, Seong-Joo
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.1
    • /
    • pp.55-66
    • /
    • 2012
  • Option pricing models using L$\acute{e}$evy processes are suggested as an alternative to the Black-Scholes model since empirical studies showed that the Black-Sholes model could not reflect the movement of underlying assets. In this paper, we investigate whether the Variance Gamma model can reflect the movement of underlying assets in the Korean stock market better than the Black-Scholes model. For this purpose, we estimate parameters and perform likelihood ratio tests using KOSPI 200 data based on the density for the log return and the option pricing formula proposed in Madan et al. (1998). We also calculate some statistics to compare the models and examine if the volatility smile is corrected through regression analysis. The results show that the option price estimated under the Variance Gamma process is closer to the market price than the Black-Scholes price; however, the Variance Gamma model still cannot solve the volatility smile phenomenon.

Comparison of methods of approximating option prices with Variance gamma processes (Variance gamma 확률과정에서 근사적 옵션가격 결정방법의 비교)

  • Lee, Jaejoong;Song, Seongjoo
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.1
    • /
    • pp.181-192
    • /
    • 2016
  • We consider several methods to approximate option prices with correction terms to the Black-Scholes option price. These methods are able to compute option prices from various risk-neutral distributions using relatively small data and simple computation. In this paper, we compare the performance of Edgeworth expansion, A-type and C-type Gram-Charlier expansions, a method of using Normal inverse gaussian distribution, and an asymptotic method of using nonlinear regression through simulation experiments and real KOSPI200 option data. We assume the variance gamma model in the simulation experiment, which has a closed-form solution for the option price among the pure jump $L{\acute{e}}vy$ processes. As a result, we found that methods to approximate an option price directly from the approximate price formula are better than methods to approximate option prices through the approximate risk-neutral density function. The method to approximate option prices by nonlinear regression showed relatively better performance among those compared.

Condition-Based Model for Preventive Maintenance of Armor Units of Rubble-Mound Breakwaters using Stochastic Process (추계학적 확률과정을 이용한 경사제 피복재의 예방적 유지관리를 위한 조건기반모형)

  • Lee, Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.4
    • /
    • pp.191-201
    • /
    • 2016
  • A stochastic process has been used to develop a condition-based model for preventive maintenance of armor units of rubble-mound breakwaters that can make a decision the optimal interval at which some repair actions should be performed under the perfect maintenance. The proposed cost model in this paper based on renewal reward process can take account of the interest rate, also consider the unplanned maintenance cost which has been treated like a constant in the previous studies to be a time-dependent random variable. A function for the unplanned maintenance cost has been mathematically proposed so that the cumulative damage, serviceability limit and importance of structure can be taken into account, by which a age-based maintenance can be extended to a condition-based maintenance straightforwardly. The coefficients involved in the function can also be properly estimated using a method expressed in this paper. Two stochastic processes, Wiener process and gamma process have been applied to armor stones of rubble-mound breakwaters. By evaluating the expected total cost rate as a function of time for various serviceability limits, interest rates and importances of structure, the optimal period of preventive maintenance can easily determined through the minimization of the expected total cost rate. For a fixed serviceability limit, it shows that the optimal period has been delayed while the interest rate increases, so that the expected total cost rate has become lower. In addition, the gamma process tends to estimate the optimal period more conservatively than the Wiener process. Finally, it is found that the more crucial the level of importance of structure becomes, the more often preventive maintenances should be carried out.

Estimation of Shelf Life for Propellant KM6 by Using Gamma Process Model (감마과정 모델을 이용한 KM6 추진제의 저장수명 예측)

  • Park, Sung-Ho;Kim, Jae-Hoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.4
    • /
    • pp.33-41
    • /
    • 2012
  • The aim of the study is to investigate the method to estimate a shelf life of KM6 single base propellant by stochastic gamma process model. The state failure level is assumed that the degradation content of stabilizer is below 0.8%. The constant of time dependent shape function and the scale parameter of stationary gamma process are estimated by moment method. The state distribution at each storage time can be shown from probability density function of deterioration. It is estimated that the $B_{10}$ life, a time at which the cumulative failure probability is 10%, is 25 years and the $B_{50}$ life is 36 years from cumulative failure distribution function curve. The $B_{50}$ life can be treated as the average shelf life from the practical viewpoint and the lifetime can be expressed as distribution curve by using stochastic process theory.

Estimation of Time-dependent Damage Paths of Armors of Rubble-mound Breakwaters using Stochastic Processes (추계학적 확률과정을 이용한 경사제 피복재의 시간에 따른 피해 경로 추정)

  • Lee, Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.4
    • /
    • pp.246-257
    • /
    • 2015
  • The progressive degradation paths of structures have quantitatively been tracked by using stochastic processes, such as Wiener process, gamma process and compound Poisson process, in order to consider both the sampling uncertainty due to the usual lack of damage data and the temporal uncertainty associated with the deterioration evolution. Several important features of stochastic processes which should carefully be considered in application of the stochastic processes to practical problems have been figured out through assessing cumulative damage and lifetime distribution as a function of time. Especially, the Wiener process and the gamma process have straightforwardly been applied to armors of rubble-mound breakwaters by the aid of a sample path method based on Melby's formula which can estimate cumulative damage levels of armors over time. The sample path method have been developed to calibrate the related-parameters required in the stochastic modelling of armors of rubble-mound breakwaters. From the analyses, it is found that cumulative damage levels of armors have surely been saturated with time. Also, the exponent of power law in time, that plays a significant role in predicting the cumulative damage levels over time, can easily be determined, which makes the stochastic models possible to track the cumulative damage levels of armors of rubble-mound breakwaters over time. Finally, failure probabilities with respect to various critical limits have been analyzed throughout its anticipated service life.

Estimation of Fatigue Crack Growth using Gamma Process Model (감마과정 모델을 적용한 피로균열 진전거동의 예측)

  • Park, Sung Ho;Kim, Jae Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.11
    • /
    • pp.1245-1256
    • /
    • 2014
  • The physical nature of fatigue shows the considerable amount of scatter from intrinsic and extrinsic factors. In this study, some degradation models, such as the gamma process model, were reviewed in terms of uncertainties associated with the continuous, gradual, and monotonic nature of fatigue crack growth. Statistically varying fatigue crack growth data obtained from Lu and Meeker were used as an example to demonstrate the use of the gamma process model. This model can describe the condition and lifetime as statistical distribution curves whose shapes vary with cycles. From the skewness of the statistical distribution curves, it was confirmed that the median is suitable for being considered as the expected life. The use of the gamma process model enables the optimum replacement period and percentile life to be employed as criteria for preventive maintenance policy.

Prediction of Expected Residual Useful Life of Rubble-Mound Breakwaters Using Stochastic Gamma Process (추계학적 감마 확률과정을 이용한 경사제의 기대 잔류유효수명 예측)

  • Lee, Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.3
    • /
    • pp.158-169
    • /
    • 2019
  • A probabilistic model that can predict the residual useful lifetime of structure is formulated by using the gamma process which is one of the stochastic processes. The formulated stochastic model can take into account both the sampling uncertainty associated with damages measured up to now and the temporal uncertainty of cumulative damage over time. A method estimating several parameters of stochastic model is additionally proposed by introducing of the least square method and the method of moments, so that the age of a structure, the operational environment, and the evolution of damage with time can be considered. Some features related to the residual useful lifetime are firstly investigated into through the sensitivity analysis on parameters under a simple setting of single damage data measured at the current age. The stochastic model are then applied to the rubble-mound breakwater straightforwardly. The parameters of gamma process can be estimated for several experimental data on the damage processes of armor rocks of rubble-mound breakwater. The expected damage levels over time, which are numerically simulated with the estimated parameters, are in very good agreement with those from the flume testing. It has been found from various numerical calculations that the probabilities exceeding the failure limit are converged to the constraint that the model must be satisfied after lasting for a long time from now. Meanwhile, the expected residual useful lifetimes evaluated from the failure probabilities are seen to be different with respect to the behavior of damage history. As the coefficient of variation of cumulative damage is becoming large, in particular, it has been shown that the expected residual useful lifetimes have significant discrepancies from those of the deterministic regression model. This is mainly due to the effect of sampling and temporal uncertainties associated with damage, by which the first time to failure tends to be widely distributed. Therefore, the stochastic model presented in this paper for predicting the residual useful lifetime of structure can properly implement the probabilistic assessment on current damage state of structure as well as take account of the temporal uncertainty of future cumulative damage.

Estimation of Storage Life for Propellant Bag by Using Gamma Process Model (감마과정 모델에 의한 장약포의 저장수명 예측)

  • Park, Sungho;Kim, Jaehoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.3
    • /
    • pp.17-25
    • /
    • 2014
  • The purpose of this paper is to present a method to estimate the storage life of propellant bag for degradation of breaking load with storage time by using gamma process model. The nitrogen compound generated by natural decomposition of propellants degrades the breaking load of propellant bag with time. The statistical distributions of condition and lifetime with time were shown from the results of accelerated life test of propellant bag cloth at $80^{\circ}C$. It was found that the use of median for life was highly appropriate and the $B_1$ or $B_5$ life should be selectively applied to the quality assurance policy.

A Simulation Model for the Intermittent Hydrologic Process (II) - Markov Chain and Continuous Probability Distribution - (간헐(間歇) 수문과정(水文過程)의 모의발생(模擬發生) 모형(模型)(II) - Markov 연쇄와 연속확률분포(連續確率分布) -)

  • Lee, Jae Joon;Lee, Jung Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.523-534
    • /
    • 1994
  • The purpose of this study is to develop computer simulation model that produce precipitation patterns from stochastic model. In the paper(I) of this study, the alternate renewal process(ARP) is used for the daily precipitation series. In this paper(Il), stochastic simulation models for the daily precipitation series are developed by combining Markov chain for the precipitation occurrence process and continuous probability distribution for the precipitation amounts on the wet days. The precipitation occurrence is determined by first order Markov chain with two states(dry and wet). The amounts of precipitation, given that precipitation has occurred, are described by a Gamma, Pearson Type-III, Extremal Type-III, and 3 parameter Weibull distribution. Since the daily precipitation series shows seasonal variation, models are identified for each month of the year separately. To illustrate the application of the simulation models, daily precipitation data were taken from records at the seven locations of the Nakdong and Seomjin river basin. Simulated data were similar to actual data in terms of distribution for wet and dry spells, seasonal variability, and precipitation amounts.

  • PDF

A Simulation Model for the Intermittent Hydrologic Process(I) - Alternate Renewal Process (ARP) and Continuous Probability Distribution - (간헐(間歇) 수문과정(水文過程)의 모의발생(模擬發生) 모형(模型)(I) - 교대재생과정(交代再生過程)(ARP)과 연속확률분포(連續確率分布) -)

  • Lee, Jae Joon;Lee, Jung Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.509-521
    • /
    • 1994
  • This study is an effort to develop computer simulation model that produce precipitation patterns from stochastic model. A stochastic model is formulated for the process of daily precipitation with considering the sequences of wet and dry days and the precipitation amounts on wet days. This study consists of 2 papers and the process of precipitation occurrence is modelled by an alternate renewal process (ARP) in paper (I). In the ARP model for the precipitation occurrence, four discrete distributions, used to fit the wet and dry spells, were as follows; truncated binomial distribution (TBD), truncated Poisson distribution (TPD), truncated negative binomial distribution (TNBD), logarithmic series distribution (LSD). In companion paper (II) the process of occurrence is developed by Markov chain. The amounts of precipitation, given that precipitation has occurred, are described by a Gamma. Pearson Type-III, Extremal Type-III, and 3 parameter Weibull distribution. Daily precipitation series model consists of two models, A-Wand A-G model, by combining the process of precipitation occurrence and a continuous probability distribution on the precipitation of wet days. To evaluate the performance of the simulation model, output from the model was compared with historical data of 7 stations in the Nakdong and Seomjin river basin. The results of paper (1) show that it is possible to design a model for the synthetic generation of IX)int precipitation patterns.

  • PDF