• Title/Summary/Keyword: Game model-based co-evolution

Search Result 4, Processing Time 0.015 seconds

Co-Evolutionary Model for Solving the GA-Hard Problems (GA-Hard 문제를 풀기 위한 공진화 모델)

  • Lee Dong-Wook;Sim Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.3
    • /
    • pp.375-381
    • /
    • 2005
  • Usually genetic algorithms are used to design optimal system. However the performance of the algorithm is determined by the fitness function and the system environment. It is expected that a co-evolutionary algorithm, two populations are constantly interact and co-evolve, is one of the solution to overcome these problems. In this paper we propose three types of co-evolutionary algorithm to solve GA-Hard problem. The first model is a competitive co-evolutionary algorithm that solution and environment are competitively co-evolve. This model can prevent the solution from falling in local optima because the environment are also evolve according to the evolution of the solution. The second algorithm is schema co-evolutionary algorithm that has host population and parasite (schema) population. Schema population supply good schema to host population in this algorithm. The third is game model-based co-evolutionary algorithm that two populations are co-evolve through game. Each algorithm is applied to visual servoing, robot navigation, and multi-objective optimization problem to verify the effectiveness of the proposed algorithms.

Game Theory Based Co-Evolutionary Algorithm (GCEA) (게임 이론에 기반한 공진화 알고리즘)

  • Sim, Kwee-Bo;Kim, Ji-Youn;Lee, Dong-Wook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.3
    • /
    • pp.253-261
    • /
    • 2004
  • Game theory is mathematical analysis developed to study involved in making decisions. In 1928, Von Neumann proved that every two-person, zero-sum game with finitely many pure strategies for each player is deterministic. As well, in the early 50's, Nash presented another concept as the basis for a generalization of Von Neumann's theorem. Another central achievement of game theory is the introduction of evolutionary game theory, by which agents can play optimal strategies in the absence of rationality. Not the rationality but through the process of Darwinian selection, a population of agents can evolve to an Evolutionary Stable Strategy (ESS) introduced by Maynard Smith. Keeping pace with these game theoretical studies, the first computer simulation of co-evolution was tried out by Hillis in 1991. Moreover, Kauffman proposed NK model to analyze co-evolutionary dynamics between different species. He showed how co-evolutionary phenomenon reaches static states and that these states are Nash equilibrium or ESS introduced in game theory. Since the studies about co-evolutionary phenomenon were started, however many other researchers have developed co-evolutionary algorithms, in this paper we propose Game theory based Co-Evolutionary Algorithm (GCEA) and confirm that this algorithm can be a solution of evolutionary problems by searching the ESS.To evaluate newly designed GCEA approach, we solve several test Multi-objective Optimization Problems (MOPs). From the results of these evaluations, we confirm that evolutionary game can be embodied by co-evolutionary algorithm and analyze optimization performance of GCEA by comparing experimental results using GCEA with the results using other evolutionary optimization algorithms.

Hybrid-clustering game Algorithm for Resource Allocation in Macro-Femto HetNet

  • Ye, Fang;Dai, Jing;Li, Yibing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.4
    • /
    • pp.1638-1654
    • /
    • 2018
  • The heterogeneous network (HetNet) has been one of the key technologies in Long Term Evolution-Advanced (LTE-A) with growing capacity and coverage demands. However, the introduction of femtocells has brought serious co-layer interference and cross-layer interference, which has been a major factor affecting system throughput. It is generally acknowledged that the resource allocation has significant impact on suppressing interference and improving the system performance. In this paper, we propose a hybrid-clustering algorithm based on the $Mat{\acute{e}}rn$ hard-core process (MHP) to restrain two kinds of co-channel interference in the HetNet. As the impracticality of the hexagonal grid model and the homogeneous Poisson point process model whose points distribute completely randomly to establish the system model. The HetNet model based on the MHP is adopted to satisfy the negative correlation distribution of base stations in this paper. Base on the system model, the spectrum sharing problem with restricted spectrum resources is further analyzed. On the basis of location information and the interference relation of base stations, a hybrid clustering method, which takes into accounts the fairness of two types of base stations is firstly proposed. Then, auction mechanism is discussed to achieve the spectrum sharing inside each cluster, avoiding the spectrum resource waste. Through combining the clustering theory and auction mechanism, the proposed novel algorithm can be applied to restrain the cross-layer interference and co-layer interference of HetNet, which has a high density of base stations. Simulation results show that spectral efficiency and system throughput increase to a certain degree.

Artificial Agent-based Bargaining Game considering the Cost incurred in the Bargaining Stage (교섭 단계에서 발생하는 비용을 고려한 인공 에이전트 기반 교섭 게임)

  • Lee, Sangwook
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.11
    • /
    • pp.292-300
    • /
    • 2020
  • According to the development of artificial intelligence technology, attempts have been made to interpret phenomena in various fields of the real world such as economic, social, and scientific fields through computer simulations using virtual artificial agents. In the existing artificial agent-based bargaining game analysis, there was a problem that did not reflect the cost incurred when the stage progresses in the real-world bargaining game and the depreciation of the bargaining target over time. This study intends to observe the effect on the bargaining game by adding the cost incurred in the bargaining stage and depreciation of the bargaining target over time (bargaining cost) to the previous artificial agent-based bargaining game model. As a result of the experiment, it was observed that as the cost incurred in the bargaining stage increased, the two artificial agents participating in the game had a share close to half the ratio and tried to conclude the negotiation in the early stage.