• 제목/요약/키워드: Game corpus

검색결과 9건 처리시간 0.022초

Document Classification Model Using Web Documents for Balancing Training Corpus Size per Category

  • Park, So-Young;Chang, Juno;Kihl, Taesuk
    • Journal of information and communication convergence engineering
    • /
    • 제11권4호
    • /
    • pp.268-273
    • /
    • 2013
  • In this paper, we propose a document classification model using Web documents as a part of the training corpus in order to resolve the imbalance of the training corpus size per category. For the purpose of retrieving the Web documents closely related to each category, the proposed document classification model calculates the matching score between word features and each category, and generates a Web search query by combining the higher-ranked word features and the category title. Then, the proposed document classification model sends each combined query to the open application programming interface of the Web search engine, and receives the snippet results retrieved from the Web search engine. Finally, the proposed document classification model adds these snippet results as Web documents to the training corpus. Experimental results show that the method that considers the balance of the training corpus size per category exhibits better performance in some categories with small training sets.

게임 도메인 웹 코퍼스를 이용한 감성사전 구축 및 평가 (Construction and Evaluation of a Sentiment Dictionary Using a Web Corpus Collected from Game Domain)

  • 정우영;배병철;조성현;강신진
    • 한국게임학회 논문지
    • /
    • 제18권5호
    • /
    • pp.113-122
    • /
    • 2018
  • 본 논문은 게임 도메인에서 웹 코퍼스를 이용하여 감성사전을 구축하는 방법과 구축한 감성사전의 평가 결과를 기술한다. 감성사전 구축을 위해 먼저 트위터 형태소 분석기를 이용해 국내 한 포털 사이트의 게임 관련 웹 문서를 기반으로 어휘를 수집하여 감성 사전 어휘 목록을 만들었고, 목록에 있는 단어들 중 동사와 형용사 품사의 단어들에 대해 감성 사전을 구축하였다. 구축된 감성 사전의 평가를 위해 영어 기반의 Senti-word Net(SWN)을 한글로 번역한 한국어 SWN을 이용하여 정밀도와 재현율 값을 계산하였다. 평가 결과 긍정과 부정 감성의 F-1 값에 대한 평균이 형용사의 경우 0.85, 동사에 대해 0.77을 각각 보여 주었다.

문화유산정보 말뭉치 구축을 위한 개체명 및 이벤트 부착 도구 (Named Entity and Event Annotation Tool for Cultural Heritage Information Corpus Construction)

  • 최지예;김명근;박소영
    • 한국컴퓨터정보학회논문지
    • /
    • 제17권9호
    • /
    • pp.29-38
    • /
    • 2012
  • 본 논문에서는 문화유산정보 말뭉치 구축을 위한 개체명 및 이벤트 부착 도구를 제안한다. 제안하는 도구를 이용하여 말뭉치 구축자는 문화유산정보 관리에 유용한 시간, 장소, 인물, 사건을 중심으로 개체명과 이벤트를 부착할 수 있다. 이 때, 개체명과 이벤트 부착이 용이하도록, 제안하는 도구에서 줄번호나 어절번호와 같은 개체명이나 이벤트의 위치정보를 자동으로 부착하며, 구축된 개체명이나 이벤트 중에서 하나를 선택하면 해당 문자열을 원문에서 진한 이탤릭체로 표시하여 올바르게 부착되었는지 쉽게 확인할 수 있다. 그리고, 제안하는 도구는 말뭉치 구축자의 수작업을 줄이기 위해서 개체명 자동인식 패턴을 활용한다. 학습말뭉치가 거의 없다는 점을 고려하여 단순한 규칙 패턴을 학습한다. 또한, 오류 전파를 차단하기 위해서, 제안하는 개체명 자동인식 패턴은 개체명 부착 말뭉치에서 추가적인 분석처리 없이 바로 추출한다. 실험결과 제안하는 개체명 및 이벤트 부착 도구는 말뭉치 구축자의 수작업량을 절반이상 줄여주었다.

한국어 극성 사전 구축을 위한 크라우드소싱 기반 감성 단어 극성 태깅 게임 (A Crowdsourcing-based Emotional Words Tagging Game for Building a Polarity Lexicon in Korean)

  • 김준기;강신진;배병철
    • 한국게임학회 논문지
    • /
    • 제17권2호
    • /
    • pp.135-144
    • /
    • 2017
  • 감성 분석은 글을 통해 작성자의 주관적인 생각이나 느낌을 분석하는 방법으로 효과적인 감성 분석을 위해서는 감성 단어 극성 사전 구축이 필수적이다. 본 논문은 효율적인 한국어 극성 사전 구축을 위해 우리가 개발한 크라우드소싱 기반 게임을 소개한다. 먼저, 크롤러를 이용해 인터넷 커뮤니티에서 말뭉치들을 수집했고, Twitter 형태소를 이용해 수집한 말뭉치를 형태소별로 분류하고 단어화했다. 이 단어들은 모바일 플랫폼 기반 태깅 게임 형태로 제공되어 게임플레이를 통해 플레이어들이 자발적으로 단어들의 극성을 선택하고 결과가 데이터 베이스에 축적되도록 게임이 설계되었다. 현재까지 약 1200여개의 단어들의 극성을 태깅하였으며, 향후 좀 더 많은 감성 단어 데이터들을 축적함으로써 특히 게임 도메인에서 한국어 감성 분석 연구에 기여할 것으로 기대한다.

한국어 의미 표지 부착 말뭉치 구축 작업 (Korean Semantic Tagged Corpus Construction working)

  • 이민지;이윤정;이정국;김종대;박찬영;송혜정;김유섭
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2012년도 제24회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.99-103
    • /
    • 2012
  • 의미 역 결정 (Semantic Role Labeling)은 문장 내의 술어-논항 요소들의 의미 관계를 결정하는 과정이다. 이를 위해서는 의미 표지 부착 말뭉치가 필요하지만 한국어의 경우 이 데이터가 매우 부족한 상황이다. 본 논문에서는 한국어 Proposition Bank(이하 PropBank) 말뭉치와 세종 용언 격틀 말뭉치 구축을 위한 의미 표지 부착 작업에 대해 설명한다. 표지 부착 작업은 말뭉치의 의존 관계를 사람이 파악하여 적절한 의미 역 태그를 다는 과정이고, 이 과정으로부터 얻은 말뭉치는 의미 역 결정을 위한 기계 학습 방법론의 훈련 자료로 이용된다. 이 과정에서 필요한 구문 표지 부착 밀뭉치로는 한국전자통신연구원의 구문표지 부착 말뭉치를, 그리고 언어자원으로는 한국어 PropBank의 frame file과 세종 용언 격틀 사전을 사용한다.

  • PDF

한국어 PropBank 및 세종 의미 표지 부착 말뭉치 구축을 위한 도구 (Annotation Tool for Construction Korean PropBank and Sejong Semantic Tagged Corpus)

  • 한대용;최한길;이정국;김종대;박찬영;송혜정;김유섭
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2012년도 제24회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.35-39
    • /
    • 2012
  • 의미역 결정에 있어 의미 표지 부착 말뭉치는 필수적이지만 한국어 의미 표지 부착 말뭉치는 영어나 중국어와 같은 언어에 비하여 구축이 미비한 상황이다. 본 논문에서는 한국어 의미 분석을 위한 한국어 Proposition Bank(이하 PropBank)와 세종 의미 표지 부착 말뭉치의 구축을 위한 소프트웨어 도구를 개발하였다. 본 논문에서 구현한 도구는 문장 성분의 의존관계를 이용하여 주어진 술어에 대한 논항을 찾아주고, PropBank 프레임 파일과 세종 용언 격틀 사전을 활용하여 사용자가 능률적으로 한국어 PropBank와 세종 의미 표지 부착 말뭉치를 구축할 수 있도록 하였다.

  • PDF

형태소 합성 기법을 이용한 형태소 패턴 사전의 반자동 구축 (Semi-Automatic Construction of Morphological Pattern Dictionary using the Method of Morphological Synthesis)

  • 박인철
    • 한국산학기술학회논문지
    • /
    • 제12권11호
    • /
    • pp.5278-5283
    • /
    • 2011
  • 초고속 한국어 형태소 분석을 위한 하나의 방법은 사전에 형태소 결과를 미리 저장해 놓고 이를 이용하는 것이다. 이러한 형태소 패턴 사전을 수작업으로 구축하려면 많은 비용이 들 뿐만 아니라 적지 않은 오류가 포함될 수 있다. 본 논문은 한국어 형태소 합성을 이용하여 자동으로 형태소 패턴을 생성하는 방법을 제안한다. 실험을 통해, 올바른 형태소 분석을 위해 사용한 형태소 패턴의 86%를 자동으로 생성함을 알 수 있었다. 형태소 패턴을 이용한 형태소 분석기가 403MB의 한국어 코퍼스를 분석하는 데 걸린 시간은 2.8GHz 윈도우 시스템에서 52.68초였다.

RNN과 트랜스포머 기반 모델들의 한국어 리뷰 감성분류 비교 (Comparison of Sentiment Classification Performance of for RNN and Transformer-Based Models on Korean Reviews)

  • 이재홍
    • 한국전자통신학회논문지
    • /
    • 제18권4호
    • /
    • pp.693-700
    • /
    • 2023
  • 텍스트 문서에서 주관적인 의견과 감정을 긍정 혹은 부정으로 분류하고 식별하는 자연어 처리의 한 분야인 감성 분석은 고객 선호도 분석을 통해 다양한 홍보 및 서비스에 활용할 수 있다. 이를 위해 최근 머신러닝과 딥러닝의 다양한 기법을 활용한 연구가 진행되어 왔다. 본 연구에서는 기존의 RNN 기반 모델들과 최근 트랜스포머 기반 언어 모델들을 활용하여 영화, 상품 및 게임 리뷰를 대상으로 감성 분석의 정확도를 비교 분석하여 최적의 언어 모델을 제안하고자 한다. 실험 결과 한국어 말뭉치로 사전 학습된 모델들 중 LMKor-BERT와 GPT-3가 상대적으로 좋은 정확도를 보여주었다.

모바일 환경을 고려한 규칙기반 음성인식 오류교정 (Rule-based Speech Recognition Error Correction for Mobile Environment)

  • 김진형;박소영
    • 한국컴퓨터정보학회논문지
    • /
    • 제17권10호
    • /
    • pp.25-33
    • /
    • 2012
  • 본 논문에서는 모바일 환경에서 음성인식한 결과에 포함된 오류를 교정하는 규칙기반 접근방법을 제안한다. 제안하는 방법은 처리시간이나 메모리에 제약을 받는 모바일 환경을 고려하여 다음과 같이 구성된다. 오류 교정 속도를 최소화하기 위해서, 음절 해체 및 조합 과정이나 형태소 분석 등의 처리를 줄이고, 최장일치 규칙 선택기준을 바탕으로 오류 발생 추정 지점에서 교정 후보도 하나만 생성한다. 제안하는 방법은 메모리를 효율적으로 사용하기 위해서, 어절사전이나 형태소분석기를 사용하지 않고, 규칙도 유형별로 따로 구분하지 않고 통합하여 저장한다. 제안하는 방법은 모델의 수정 및 유지보수가 용이하도록, 오류교정규칙을 학습말뭉치에서 자동으로 추출하여 구축한다. 실험결과 제안하는 방법은 음성인식 결과에 대하여 정확률을 5.27% 정도 재현율을 5.60% 정도 개선하였다.