가상세계에서 다중 에이전트들의 집단행동을 사실적으로 시뮬레이션하는 것은 중요하다. 대부분의 기존 연구가 개방된 공간에서의 집단행동에 초점 맞춘 반면, 본 논문은 제한된 공간에서 조종력을 이용한 집단행동에 대하여 연구한다. 에이전트들은 제한된 공간에서 하나의 공동 목적지를 가지며, 다른 에이전트와 충돌을 피하면서 목적지로 이동하여야 한다. 이러한 환경에서 세 가지 가능한 에이전트 모델을 제시 하였으며, 각 모델에 필요한 여섯 가지 조종력도 제안하였다. 제안된 모델의 올바름을 보이기 위하여 모델들을 시뮬레이션 하였다. 시뮬레이션 결과는 벽들과 출입구에 따라 각 에이전트가 목적지에 도착하는 시간은 달랐지만, 단순히 조종력만을 사용하는 제안된 모델들이 제한된 공간에서 잘 동작하는 것을 보였다.
LLM(Large Language Model)을 활용하여 사전에 게임 데이터 학습 없이 텍스트 기반 게임을 수행할 수 있는지 알아보았다. LLM을 구현한 시스템으로는 ChatGPT-3.5와 가장 최신 형태인 ChatGPT-4를 채택하였다. 이에 더해 ChatGPT-4에 본 논문에서 제안하는 영구 메모리 기능을 추가하여 세 개의 게임 플레이어 에이전트를 제작하였다. 텍스트 기반 게임으로 가장 유명한 Zork를 활용하여 복잡한 장소를 이동해가며 정보를 모으고 퍼즐을 풀 수 있는지 알아보았다. 그 결과 세 에이전트 중 영구 메모리 기능을 추가한 에이전트의 성능이 탐험을 가장 넓은 범위로 진행하였고 점수도 가장 뛰어났다. 그러나 세 에이전트 모두 퍼즐을 푸는데 한계를 보였으며 이는 다단계 추론이 필요한 문제에 LLM이 취약하다는 것을 보여주었다. 그럼에도 여전히 본 논문에서 제안하는 에이전트를 사용하면 전체 장소의 37.3%를 방문하고, 방문했던 장소의 아이템을 모두 모으는데 성공할 수 있었던 것으로 LLM의 가능성을 확인할 수 있었다.
NEMO 기본 지원 (NEMO-BS, NEMO Basic Support) 프로토콜에서 MNN(Mobile Network Node)가 CN(Correspondent Node) 과 통신을 하기 위해서는 항상 MR(Mobile Router)과 HA(Home Agent) 사이의 양방향 터널을 이용해야 한다. 그러나 NEMO-BS 방식은 노드 간 데이터 전송 지연과 부분 구간에 대한 공격 가능성이 존재한다. 따라서 본 논문에서는 NEMO를 위한 인증된 경로 최적화(ATRO) 프로토콜을 제안한다. MR은 홈 링크로부터 멀어졌다고 판단되면 MNN으로부터 위임 권한을 얻기 위해 권한 위임 프로토콜을 수행한다. 그런 후에 MR과 CN은 공개키 암호 방식을 이용하여 자신의 의탁주소(CoA, Care-of Address)를 MNN의 홈 주소(HoA, Home-of Address)와 매핑하기 위한 등록 과정을 수행한다. 이때 각 노드의 주소 소유권 증명을 위해 암호학적으로 생성한 주소(CGA, Cryptographically Generated Address)를 이용한다. 성능분석에서는 구간별 안전성과 종단간 패킷 전송 지연 시간을 통해 프로토콜을 분석한다.
무리 짓기는 대규모 무리의 사실적인 시뮬레이션으로 게임이나 컴퓨터 그래픽에서 자주 사용된다. 이러한 대규모 무리의 실시간 시뮬레이션은 계산 집약적 작업이기 때문에 효율적인 알고리즘에 대한 많은 연구들이 있었다. 본 논문에서는 기존의 효율적인 무리 짓기 알고리즘이 불필요한 계산을 포함하고 있다는 사실은 실험적으로 찾아내고, 간단한 휴리스틱으로 이러한 단점을 개선하는 새로운 알고리즘을 제안한다. 제안된 방법의 성능을 평가하기 위하여 많은 실험을 수행하였다. 실험의 결과는 제안하는 알고리즘이 기존의 효율적인 알고리즘에 비하여 평균 약 21%정도 성능을 개선한다는 것을 보였다.
Self-Imitation Learning은 간단한 비활성 정책 actor-critic 알고리즘으로써 에이전트가 과거의 좋은 경험을 활용하여 최적의 정책을 찾을 수 있도록 해준다. 그리고 actor-critic 구조를 갖는 강화학습 알고리즘에 결합되어 다양한 환경들에서 알고리즘의 상당한 개선을 보여주었다. 하지만 Self-Imitation Learning이 강화학습에 큰 도움을 준다고 하더라도 그 적용 분야는 actor-critic architecture를 가지는 강화학습 알고리즘으로 제한되어 있다. 본 논문에서 Self-Imitation Learning의 알고리즘을 가치 기반 강화학습 알고리즘인 DQN에 적용하는 방법을 제안하고, Self-Imitation Learning이 적용된 DQN 알고리즘의 학습을 다양한 환경에서 진행한다. 아울러 그 결과를 기존의 결과와 비교함으로써 Self-Imitation Leaning이 DQN에도 적용될 수 있으며 DQN의 성능을 개선할 수 있음을 보인다.
Military deception is an action executed to deliberately mislead enemy's decision by deceiving friendly forces intention. In the lessons learned from war history, deception appears to be a critical factor in the battlefield for successful operations. As training using war-game simulation is growing more important, it is become necessary to implement military deception in war-game model. However, there is no logics or rules proven to be effective for CGF(Computer Generated Forces) to conduct deception behavior automatically. In this study, we investigate methodologies for CGF to learn and conduct military deception using Reinforcement Learning. The key idea of the research is to define a new criterion called a "deception index" which defines how agent learn the action of deception considering both their own combat objectives and deception objectives. We choose Korea Marine Corps Amphibious Demonstrations to show applicability of our methods. The study has an unique contribution as the first research that describes method of implementing deception behavior.
협상은 상거래에 있어서 매우 중요한 요소 중 하나이다. 현재의 웹 기반 전자상거래 시스템은 이러한 중요한 협상 구조를 상거래에 잘 반영하지 못하는 문제점을 가지고 있다. 이러한 문제점중 기업과 소비자간의 미비한 협상 구조를 보안하기 위해 실세계 상거래에서 존재하는 점원을 전자상거래상의 가상점원으로 모델링하여 회사의 정책과 구매자의 특성을 반영하여 구매자와 전략적으로 자동 협상을 수행할 수 있는 에이전트의 구조를 설계하고 구현하였다. 협상은 매우 복잡한 구조를 가지고 있다. 이러한 협상 구조를 지원하기 위해서는 상호간의 제안을 표현하고, 그 제안에 대한 평가 내용과 결정사항을 전달할 수 있는 언어적인 조가 필요하며, 협상의 대상이 되는 사안들의 특성을 반영할 수 있는 표현 구조도 요구된다. 또한 이러한 협상에서 전략을 세우고 알맞은 제안을 제시하며 상대의 제안에 대하여 전략적으로 반응할 수 있는 의사결정 모델이 요구된다. 본 논문에서는 회사의 정책 모델과 구매자의 모델을 정의하고 이를 이용한 협상 모델을 설계 구현하였다. 협상 구조의 모델링을 위해 KQML(Knowledge Query Manipulation Language)을 기반으로 전자상거래 프로토콜로 설계하고, 논쟁 기반 협상 모델을 기초로 협상언어를 설계하였다. 또한 협상에서의 전략적인 의사결정을 위해 게임이론을 이용하고, 규칙 기반 시스템으로 이를 보충하였다. 마지막으로 가상점원 모델을 바탕으로 조립 컴퓨터 판매를 위한 가상점원을 구현하였고, 이에 대한 실험을 통하여 가상점원의 유용성을 보였다.
웹 기반의 온라인 커뮤니티가 급속하게 증가함에 따라 사회적인 집단(커뮤니티)에서의 에이전트들은 안전하고 성공적인 상호거래를 위하여 서로의 신뢰도를 계산할 수 있는 형태의 믿음으로 알 수 있어야 한다. 본 논문은 온라인 커뮤니티에서 주어진 피드백으로 형성된 신뢰도의 계산적 모델을 제안한다. 신뢰도는 과거의 상호작용에 기반한 평가수치의 축적으로 정의할 수 있으며, 평균 신뢰도는 믿을 수 있는 값과 믿을 수 없는 값의 분포를 고려한 중심값으로 나타낸다. 온라인 커뮤니티에서의 명성, 신뢰도, 평균 신뢰도의 관계를 구체적인 예를 통하여 설명하며, 정의한 신뢰도 모델이 어떻게 온라인 커뮤니티에서 에이전트의 이성적인 거래를 가능하게 하는가를 보여준다.
협상은 상거래에 있어서 매우 중요한 요소 중 하나이다. 현재의 웹 기반 전자상거래 시스템은 이러한 중요한 협상 구조를 상거래에 잘 반영하지 못하는 문제점을 가지고 있다. 이러한 문제점중 기업과 소비자간의 미비한 협상 구조를 보안하기 위해 실세계 상거래에서 존재하는 점원을 전자상거래상의 가상점원으로 모델링하여 회사의 정책과 구매자의 특성을 반영하여 구매자와 전략적으로 자동 협상을 수행할 수 있는 에이전트의 구조를 설계하고 구현하였다. 협상은 매우 복잡한 구조를 가지고 있다. 이러한 협상 구조를 지원하기 위해서는 상호간의 제안을 표현하고, 그 제안에 대한 평가 내용과 결정사항을 전달할 수 있는 언어적인 구조가 필요하며, 협상의 대상이 되는 사안들의 특성을 반영할 수 있는 표현 구조도 요구된다. 또한 이러한 협상에서 전략을 세우고 알맞은 제안을 제시하며 상대의 제안에 대하여 전략적으로 반응할 수 있는 의사결정 모델이 요구된다. 본 논문에서는 회사의 정책 모델과 구매자의 모델을 정의하고 이를 이용한 협상 모델을 설계 구현하였다. 협상 구조의 모델링을 위해 KQML(Knowledge Query Manipulation Language)을 기반으로 전자상거래 프로토콜로 설계하고, 논쟁 기반 협상 모델을 기초로 협상언로를 설계하였다. 또한 협상에서의 전략적인 의사결정을 위해 게임이론을 이용하고, 규칙 기반 시스템으로 이를 보충하였다. 마지막으로 가상점원 모델을 바탕으로 조립 컴퓨터 판매를 위한 가상점원을 구현하였고, 이에 대한 실험을 통하여 가상점원의 유용성을 보였다.
Recently, RoboCup soccer simulation has been regarded as a good benchmark problem for multiagent researches. Soccer agents have to make decision based on visual and auditory information, which are sent from the soccer server. In order to develop a strong team, we have to design decision-making process of each player agent. However, it is very difficult for us to design the decision-making processes in detail, because we don't know what actions of each player are effective for the team. In this paper, we attempt to apply co-evolutionary method, which is one type of analogies of evolution, to improve the team play. Agents have hand coded basic skills, which include dribble, shoot, pass etc. Agents already can play autonomously and independently. Individual agent skills are characterized by some parameters. By coevolving teams with these parameters, we obtained relatively interesting teams, in which players behave cooperatively in order to win the soccer game. From some experiments, we discuss what teams are evolved.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.