• Title/Summary/Keyword: Galvanometer

Search Result 33, Processing Time 0.018 seconds

Robust Controls of a Galvanometer : A Feasibility Study

  • Park, Myoung-Soo;Kim, Young-Chol;Lee, Jae-Won
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.1 no.2
    • /
    • pp.94-98
    • /
    • 1999
  • Optical scanning systems use glavanometers to point the laser beam to the desired position on the workpiece. The angular speed of a galvanometer is typically controlled using Proportional+Integral+Derivative(PID) control algorithms. However, natural variations in the dynamics of different galvanometers due to manufacturing, aging, and environmental factors(i.e., process uncertainty) impose a hard limit on the bandwidth of the galvanometer control system. In general, the control bandwidth translates directly into efficiency of the system response. Since the optical scanning system must have rapid response, the higher control bandwidth is required. Auto-tuning PID algorithms have been accepted in this area since they could overcome some of the problems related to process uncertainty. However, when the galvanometer is attached to a larger mechanical system, the combined dynamics often exhibit resonances. It is well understood that PId algorithms may not have the capacity to increase the control bandwidth in the face of such resonances. This paper compares the achieable performance and robustness of a galvanometer control system using a PID controller tuned by the Ziegler-Nichols method and a controller designed by the Quantitative Feedback Theory(QFT) method. The results clearly indicate that-in contrast to PID designs-QFT can deliver a single, fixed controller which will supply high bandwidth design even when the dynamics is uncertain and includes mechanical resonances.

  • PDF

Controller Design of a galvanometer for Laser Marking Equipment (레이저 마킹 장비를 위한 갈바노미터의 제어기 설계)

  • 방승현;홍선기;김수길;강태삼
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.3
    • /
    • pp.25-31
    • /
    • 2003
  • In this paper, proposed is a control system for a galvanometer which is widely used fer laser display, laser processing and marking systems. The galvanometer with mirror is modeled as a second-order dynamic system Based on frequency responses and time domain responses of the developed model, a conventional PID controller is designed And it is implemented using a DSP(TMS320C32) chip with precision A/D and D/A converters. Through frequency response and experimental results, it is convinced that the proposed control system works well in real environment. Furthermore it is very easy to be connected to any PC because of USB communication port, and the cost of the marking system can be lowered very much because the DSP do the all the jobs for generating font motion as well as controlling the galvanometer.

Development of a high-performance controller for Laser Marking system using Galvanometer

  • Hyun, Bang-Seoung;Gi, Hong-Sun;Sam, Kang-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.111.5-111
    • /
    • 2001
  • This paper places great importance on performance improvement of Galvanometer system used for laser display, laser processing, marking system. Fundamentally, we implement control system, on that assumption that laser source exists, and design basic PID controller. Hardware is composed of DSP(TMS320C32) chip, and the position compensation of Galvanometer is performed by using 16-bit A/D and D/A converter. Through frequency response analysis and simulation, the attribute of plant and controller is captured and then, total system is analyzed. We deliberate noise problem that can be caused from analog signal as driving signal for Galvanometer.

  • PDF

Laser Scanning Technology for Ultrasonic Horn Location Compensation to Modify Nano-size Grain (나노계면 형성을 위한 초음파 진동자 위치보정을 위한 레이저 스캐닝 기술)

  • Kim, Kyugnhan;Lee, Jaehoon;Kim, Hyunse;Park, Jongkweon;Yoon, Kwangho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.12
    • /
    • pp.1121-1126
    • /
    • 2014
  • To compensate location error of ultrasonic horn, the laser scanning system based on the galvanometer scanner is developed. It consists of the 3-Axis linear stage and the 2-Axis galvanometer scanner. To measure surface shape of three-dimensional free form surface, the dynamic focusing unit is adopted, which can maintain consistent focal plane. With combining the linear stage and the galvanometer scanner, the scanning area is enlarged. The scanning CAD system is developed by stage motion teaching and NURBS method. The laser scanning system is tested by marking experiment with the semi-cylindrical sample. Scanning accuracy is investigated by measured laser marked line width with various scanning speed.

Development of High Speed Synchronous Control System for Real Time 3D Eye Imaging Equipment (망막의 3차원 실시간 영상화를 위한 고속 동기제어 시스템 개발)

  • 고종선;김영일;이용재;이태훈
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.1
    • /
    • pp.17-23
    • /
    • 2003
  • To show a retina shape and thickness on the computer monitor, a laser has been used in Scanning Laser Ophthalmoscope(SLO) equipment using the travelling difference. This method requires exact synchronous control of laser travelling in optic system to show a clear 3-dimensional image of retina. To obtain this image, this exact synchronism is very important for making the perfect plane scanning. In this study, a synchronous control of the galvanometer to make 3-dimensional retina image is presented. For the more, a very simple mathematical model of the galvanometer is approved by experimental result.

A study on the design of the laser marking system using galvanometer scanner (갈바노미터 스캐너를 이용한 레이저 마킹 시스템 설계 제작에 관한 연구)

  • 조태익;이건이
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.145-148
    • /
    • 1986
  • To perform the marking on metal with high speed and non-contact using the laser beam of high energy, laser marking system is designed and fabricated applying the galvanometer scanner capable of high speed-precise beam positioning controlled by microprocessor. Laser is a Q-switched Nd:YAG producing multi-mode, wavelength, 1060nm. Optical system is composed of beam expander, scanning mirror and flat field lens. Consequently, the laser marking is satisfactorily achieved regardless of kinds of metal.

  • PDF

High-Speed Femtosecond Laser Micromachining with a Scanner (스캐너를 이용한 고속 펨토초 레이저 가공 기술)

  • Sohn, Ik-Bu;Choi, Sung-Chul;Noh, Young-Chul;Ko, Do-Kyeong;Lee, Jong-Min
    • Laser Solutions
    • /
    • v.9 no.2
    • /
    • pp.11-15
    • /
    • 2006
  • We report experimental results on the high-speed micromachining using a femtosecond laser (800 nm, 130 fs, 1kHz) and galvanometer scanner system (Raylase, Germany). Periodic hole drilling of silicon and glass with the scan speed of 1-20 mm/s is demonstrated. Finally, we demonstrate the utility of the femtosecond laser application to ITO patterning by using a high-speed femtosecond laser scanner system.

  • PDF

A Study of Galvanometer Driving for Laser Marking (레이져 마킹을 위한 갈바노미터 구동에 관한 연구)

  • 최치영;홍선기;강태삼;김수길
    • Proceedings of the KAIS Fall Conference
    • /
    • 2001.05a
    • /
    • pp.273-276
    • /
    • 2001
  • 본 논문에서는 레이져 마킹용 갈바노미터의 구동을 위하여 마킹에 필요한 벡터 폰트의 개발환경 구축하고, 만들어진 벡터 폰트를 PC와 구동 장치간의 통신용 인터페이스를 제작하여 갈바노미터(galvanometer)에 송신, 출력할 수 있도록 하였다. 벡터 폰트의 곡선 처리는 베지어(Bezier) 함수를 사용한 외곽선 폰트(outline pent)를 사용하였다. 폰트 에디터를 이용하여 문자를 작성한 후 문자의 외곽선 정보를 인터페이스 카드에 보내고, 이 데이터를 D/A 변환기를 통해 갈바노미터 구동장치를 구동하고, 레이져를 갈바노미터 반사경에 조사하여 폰트를 출력할 수 있도록 하였다. 인터페이스 카드는 16비트 D/A변환기를 이용하여 PC의 ISA버스를 이용하였다. 실험을 통해 개발된 장치의 구동이 올바르게 동작함을 확인하였다.

Development of high speed synchronous control system for real time 3D eye imaging equipment using deadbeat observer (데드비트 관측기를 이용한 망막의 3차원 실시간 영상화를 위한 고속 동기제어 시스템 개발)

  • Ko Jong-Sun;Kim Young-Il;Lee Tae-hoon
    • Proceedings of the KIPE Conference
    • /
    • 2002.11a
    • /
    • pp.177-180
    • /
    • 2002
  • To show a retina shape and thickness on the computer monitor, a laser has been used in Scanning Laser Ophthalmoscope(SLO) equipment using the travelling difference. This method requires exact synchronous control of laser travelling in optic system to show a clear 3-dimensional image of retina. To obtain this image, this exact synchronism is very important for making the perfect plane scanning. In this study, a synchronous control of the galvanometer using deadbeat torque observer to make 3-dimensional retina image is presented. For the more, a very simple mathematical model of the galvanometer is approved by experimental result.

  • PDF