• Title/Summary/Keyword: Galvanic Series

Search Result 14, Processing Time 0.022 seconds

The Development of the Low Power Consumption and Long Life Battery using a Galvanic Series (저전력형 반영구적인 갈바니 전원장치 개발)

  • Bae, Jeong-Hyo;Kim, Dae-Kyeong;Ha, Tae-Hyun;Lee, Hyun-Goo;Choi, Sang-Bong;Jeong, Seong-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.3201-3204
    • /
    • 2000
  • In general, analog tester or strip chart recorder have been used to measure the corrosion potential of structures such as gas pipelines, oil pipelines, hot water pipelines, power cables etc. Recently, automatic digital data logger substitutes for these manual equipment because using these manual equipments are tedious and time consuming. However, digital data logger also has a shortcoming, that is, short measuring time because of the short lifetime of batteries. Therefore, we developed a long lifetime and low power loss battery taking advantage of galvanic series. In this paper, the results of development for power generator using two metals and DC/DC converter in order to obtain enough voltage for the operation of digital data logger. DC/DC converter operates with 0.5[V]. Its output voltage is 3.5[V] and output current is from 60[mAh] to 1,200[mAh].

  • PDF

Galvanic Corrosion Behavior between Carbon Steel Bolted GECM(Graphite Epoxy Composite Material)/Al plates (탄소강 볼트 체결된 GECM(Graphite Epoxy Composite Material)/Al 판재 간의 갈바닉 부식 거동)

  • Kim, Youngsik;Park, Sujin;Yoo, Youngran
    • Corrosion Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.12-26
    • /
    • 2013
  • This work focused on galvanic corrosion of carbon steel bolted GECM/Al plates by long-term test in tap water and NaCl solutions. Test product was carbon steel bolted between cross packed GECM and painted aluminium. Tests for the product and coupled parts determined corrosion rate in tap water and NaCl solutions. Also, using a potentiostat and salt water sprayer, galvanic test was done. In galvanic test on carbon steel bolted GECM/Al plates, corrosion of carbon steel bolt was faster in series of tap water>1% NaCl solution>3.5% NaCl solution. In galvanic couple between aluminium and carbon steel bolt, their corrosion rates were higher than those of single specimen. In galvanic couple between GECM, aluminium, and carbon steel bolt, corrosion behaviors of carbon steel bolt and aluminium were changed due to different corrosion mechanism in tap water and chloride solution.

Effects of NaCl Concentration and Solution Temperature on the Galvanic Corrosion between CFRP and AA7075T6

  • Hur, S.Y.;Kim, K.T.;Yoo, Y.R.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.75-81
    • /
    • 2020
  • To reduce structural weight, light metals, including aluminum and magnesium alloys, have been widely used in various industries such as aircraft, transportation and automobiles. Recently, composite materials such as Carbon Fiber Reinforced Plastics (CFRP) and Graphite Epoxy Composite Material (GECM) have also been applied. However, aluminum and its alloys suffer corrosion from various factors, which include aggressive ions, pH, solution temperature and galvanic contact by potential difference. Moreover, carbon fiber in CFRP and GECM is a very efficient cathode, and very noble in the galvanic series. Galvanic contact between carbon fiber composites and metals in electrolytes such as rain or seawater, is highly undesirable. Notwithstanding the potentially dangerous effects of chloride and temperature, there is little research on galvanic corrosion according to chloride concentration and temperature. This work focused on the effects of chloride concentration and solution temperature on AA7075T6. The increased galvanic corrosion between CRFP and AA7075T6 was evaluated by electrochemical experiments, and these effects were elucidated.

Surface-Enhanced Raman Scattering of Benzenethiol Adsorbed on Silver-Exchanged Copper Powders

  • Shin, Kuan-Soo;Ryoo, Hyun-Woo;Lee, Yoon-Mi;Kim, Kwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.2
    • /
    • pp.445-449
    • /
    • 2008
  • Micrometer-sized copper (mCu) powders are weakly surface-enhanced Raman scattering (SERS) active by the excitation at 632.8 nm, but nearly ineffective as a SERS substrate at 514.5 nm excitation. The SERS activity of mCu powders at both excitation wavelengths can be increased dramatically by a simple method of the galvanic exchange reaction with AgNO3 in aqueous medium. In this work, the SERS activity of the Ag-exchanged Cu powders (mCu@Ag) has been evaluated by taking a series of Raman spectra using benzenethiol (BT) as the probe molecule. It is clearly confirmed by field emission scanning electron microscopy and X-ray diffractometry that the SERS activity of mCu@Ag powders is, in fact, highly dependent on the extent of galvanic reaction.

The Aqueous Corrosion Characteristics of Catenary Materials of Electric Railway System (전차선로 가선재의 수용액 부식 특성)

  • 김용기;장세기;조성일;이재봉
    • Journal of the Korean Society for Railway
    • /
    • v.4 no.2
    • /
    • pp.62-70
    • /
    • 2001
  • Pure copper, Cu-1.1wt%Cd and ACSR(Aluminum Conductor Steel Reinforced) have been used as catenary materials of the electric railway system. Since these materials may be exposed to the corrosive environments like polluted air, acid rain and sea water, it is important to investigate the corrosion rates in various corrosive environments. The aqueous corrosion characteristics of catenary materials in aerated acid, neutral and alkali solutions were studied by using immersion corrosion tests, electrochemical measurements and analytical techniques. In order to examine corrosion characteristics according to the dissolved oxygen content, pH, chloride ion concentration ion, and the addition of Cd to Cu, a series of tests such as potentiodynamic polarization, a.c impedance spectroscopy and galvanic corrosion tests were carried out with these materials. Results showed that the addition of Cd to Cu and chloride ion in the solution have an adverse effects on the resistance to corrosion. Additionally, Galvanic currents between Al and steel wires of ACSR were confirmed by using ZRA(zero resistance ammeter) method.

  • PDF

An Electrochemical Study on the Effect of Post-Weld Heat Treatment about Corrosion Resistance Property of SS400 Steel for Ship`s Materials (선박재료용 SS400강의 내식성에 대한 용접후 열처리효과에 관한 전기화학적 연구 (II))

  • 김성종;김진경;문경만
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.5
    • /
    • pp.58-68
    • /
    • 2000
  • When SS400 steel was welded with low hydrogen type and ilmennite type welding, the effect of post-weld heat treatment(PWHT) was investigated with parameters such as micro vickers hardness, corrosion potential, polarization behaviors, galvanic current, Al anode generating current and Al anode weight loss etc. Hardness of each parts(HAZ, BM, WM) by PWHT in case of low hydrogen type and ilmennite type welding was lower than that of each parts by As-welded However hardness of WM area in case of low hydrogen type and ilmennite type welding was the highest among those three parts regardless of PWHT, Whereas in case of ilmennite type welding, WM area was the highest potential among these three parts on galvanic potential series with As-welded while BM area was the highest potential among these three parts by PWHT on the contrary. And in case of low hydrogen type welding, galvanic corrosion and micro cell corrosion of welding parts was decreased with PWHT. However, It was increased with PWHT in case of ilmennite type welding. Moreover Al anode generating current and anode weight loss in case of low hydrogen type was decreased by PWHT compared to As-wedled but, which was increased than that of As-welded in case of ilmennite type welding. Therefore, it is suggested that Corrosion resistance property in case of low hydrogen type welding is increased by PWHT. However its property was devreased with PWHT in case of ilmennite type welding.

  • PDF

Assessment of titanium alloy bolts for structural applications

  • Li, Dongxu;Uy, Brian;Wang, Jia;Song, Yuchen
    • Steel and Composite Structures
    • /
    • v.42 no.4
    • /
    • pp.553-568
    • /
    • 2022
  • This paper explored the viability of utilising titanium alloy bolts in the construction industry through an experimental programme, where a total of sixty-six titanium alloy (Ti/6Al/4V) bolts were tested under axial tension, pure shear and combined tension and shear. In addition, a series of Charpy V-notch specimens machined from titanium alloy bolts, conventional high-strength steel bolts, austenitic and duplex stainless steel bolts were tested for impact toughness comparisons. The obtained experimental results demonstrated that the axial tensile and pure shear capacities of titanium alloy bolts can be reasonably estimated by the current design standards for steel structures (Eurocode 3, AS 4100 and AISC 360). However, under the combined tension and shear loading conditions, significant underestimation by Eurocode 3 and unsafe predictions through AS 4100 and AISC 360 indicate that proper modifications are necessary to facilitate the safe and economic use of titanium alloy bolts. In addition, numerical models were developed to calibrate the fracture parameters of the tested titanium alloy bolts. Furthermore, a design-based selection process of titanium alloy bolts in the structural applications was proposed, in which the ultimate strength, ductility performance and corrosion resistance (including galvanic corrosion) of titanium alloy bolts was mainly considered.

Development of a Novel 30 kV Solid-state Switch for Damped Oscillating Voltage Testing System

  • Hou, Zhe;Li, Hongjie;Li, Jing;Ji, Shengchang;Huang, Chenxi
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.786-797
    • /
    • 2016
  • This paper describes the design and development of a novel semiconductor-based solid-state switch for damped oscillating voltage test system. The proposed switch is configured as two identical series-connected switch stacks, each of which comprising 10 series-connected IGBT function units. Each unit consists of one IGBT, a gate driver, and an auxiliary voltage sharing circuit. A single switch stack can block 20 kV-rated high voltage, and two stacks in series are proven applicable to 30 kV-rated high voltage. The turn-on speed of the switch is approximately 250 ns. A flyback topology-based power supply system with a front-end power factor correction is built for the drive circuit by loosely inductively coupling each unit with a ferrite core to the primary side of a power generator to obtain the advantages of galvanic isolation and compact size. After the simulation, measurement, and estimation of the parasitic effect on the gate driver, a prototype is assembled and tested under different operating regimes. Experimental results are presented to demonstrate the performance of the developed prototype.

Corrosion mitigation of photovoltaic ribbon using a sacrificial anode (희생양극을 이용한 태양광 리본의 부식 저감)

  • Oh, Wonwook;Chan, Sung-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.681-686
    • /
    • 2017
  • Degradation is commonly observed in field-aged PV modules due to corrosion of the photovoltaic ribbon. The reduced performance is caused by a loss of fill factor due to the high series resistance in the PV ribbon. This study aimed to mitigate the degradation by corrosion using five sacrificial anodes - Al, Zn and their alloys - to identify the most effective material to mitigate the corrosion of the PV ribbon. The corrosion behavior of the five sacrificial anode materials were examined by open circuit potential measurements, potentiodynamic polarization tests, and galvanic current density and potential measurements using a zero resistance ammeter. Immersion tests for 120 hours were also conducted using materials and damp heat test tests were performed for 1500 hours using 4 cell mini modules. The Al-3Mg and Al-3Zn-1Mg sacrificial anodes had a low corrosion rate and reduced drop in power, making then suitable for long-term use.

Corrosion Characteristics of Catenary Materials in Electric Railway System (전차선로 가선재료의 부식특성)

  • 김용기;윤상인;장세기;이재봉
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.535-542
    • /
    • 2000
  • Pure copper, Cu-1.1wt%Cd and ACSR(Aluminum Conductor Steel Reinforced) have been used as Catenary Materials in Electric Railway System. Since these materials may have chance to be exposed to the corrosive environments like polluted air, acid rain and sea water, it is important not only to investigate the corrosion characteristics but also to measure corrosion rates in various corrosive environments. In order to examine corrosion characteristics according to the dissolved oxygen content, pH, chloride ion concentration ion, and the addition of Cd to Cu, a series of tests such as potentiodynamic polarization. a.c impedance spectroscopy and galvanic corrosion tests were carried out in these materials. Results showed that the addition of Cd to Cu and chloride ion in the solution have an adverse effect on the resistance to corrosion. Additionally, Galvanic currents between Al and steel wires of ACSR were confirmed by using ZRA(zero resistance ammeter) method.

  • PDF