• Title/Summary/Keyword: Galois irreducible polynomial

Search Result 14, Processing Time 0.023 seconds

A Study on Constructing Highly Adder/multiplier Systems over Galois Felds

  • Park, Chun-Myoung
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.318-321
    • /
    • 2000
  • This paper propose the method of constructing the highly efficiency adder and multiplier systems over finite fie2, degree of uk terms, therefore we decrease k into m-1 degree using irreducible primitive polynomial. We propose two method of control signal generation for perform above decrease process. One method is the combinational logic expression and the other method is universal signal generation. The proposed method of constructing the highly adder/multiplier systems is as following. First of all, we obtain algorithms for addition and multiplication arithmetic operation based on the mathematical properties over finite fields, next we construct basic cell of A-cell and M-cell using T-gate and modP cyclic gate. Finally we construct adder module and multiplier module over finite fields after synthesize ${\alpha}$$\^$k/ generation module and control signal CSt generation module with A-cell and M-cell. Then, we propose the future research and prospects.

  • PDF

Generalization of Galois Linear Feedback Register (갈로이 선형 궤환 레지스터의 일반화)

  • Park Chang-Soo;Cho Gyeong-Yeon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.1 s.307
    • /
    • pp.1-8
    • /
    • 2006
  • This thesis proposes Arithmetic Shift Register(ASR) which can be used as pseudo random number generator. Arithmetic Shift. Register is defined as progression that multiplies random number D , not 0 or 1 at initial value which is not 0, and it is represented as ASR-D in this thesis. Irreducible polynomial that t which makes $'D^k=1'$ satisfies uniquely as $'t=2^n-1'$ over. $GF(2^n)$ is the characteristic polynomial of ASR-D , and the cycle of Arithmetic Shift Register has maximum cycle as $'2^n-1'$. Galois Linear Feedback Shift Register corresponds to ASR-2-1. Therefore, Arithmetic Shift Register proposed in this thesis generalizes Galois Linear Feedback Shift Register. Linear complexity of ASR-D over$GF(2^n)$ is $'n{\leq}LC{\leq}\frac{n^2+n}{2}'$ and in comparison with existing Linear Feedback Shift Register stability is high. The Software embodiment of arithmetic shift register proposed in this thesis is efficient than that of existing Linear Shift Register and hardware complexity is equal. Arithmetic shift register proposed in this thesis can be used widely in various fields such as cipher, error correcting codes, Monte Carlo integral, and data communication etc along with existing linear shift register.

$AB^2$ Semi-systolic Architecture over GF$GF(2^m)$ ($GF(2^m)$상에서 $AB^2$ 연산을 위한 세미시스톨릭 구조)

  • 이형목;전준철;유기영;김현성
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.12 no.2
    • /
    • pp.45-52
    • /
    • 2002
  • In this contributions, we propose a new MSB(most significant bit) algorithm based on AOP(All One Polynomial) and two parallel semi-systolic architectures to computes $AB^2$over finite field $GF(2^m)$. The proposed architectures are based on standard basis and use the property of irreducible AOP(All One Polynomial) which is all coefficients of 1. The proposed parallel semi-systolic architecture(PSM) has the critical path of $D_{AND2^+}D_{XOR2}$ per cell and the latency of m+1. The modified parallel semi-systolic architecture(WPSM) has the critical path of $D_{XOR2}$ per cell and has the same latency with PSM. The proposed two architectures, PSM and MPSM, have a low latency and a small hardware complexity compared to the previous architectures. They can be used as a basic architecture for exponentiation, division, and inversion. Since the proposed architectures have regularity, modularity and concurrency, they are suitable for VLSI implementation. They can be used as a basic architecture for algorithms, such as the Diffie-Hellman key exchange scheme, the Digital Signature Algorithm(DSA), and the ElGamal encryption scheme which are needed exponentiation operation. The application of the algorithms can be used cryptosystem implementation based on elliptic curve.

Design of a Small-Area Finite-Field Multiplier with only Latches (래치구조의 저면적 유한체 승산기 설계)

  • Lee, Kwang-Youb
    • Journal of IKEEE
    • /
    • v.7 no.1 s.12
    • /
    • pp.9-15
    • /
    • 2003
  • An optimized finite-field multiplier is proposed for encryption and error correction devices. It is based on a modified Linear Feedback Shift Register (LFSR) which has lower power consumption and smaller area than prior LFSR-based finite-field multipliers. The proposed finite field multiplier for GF(2n) multiplies two n-bit polynomials using polynomial basis to produce $z(x)=a(x)^*b(x)$ mod p(x), where p(x) is a irreducible polynomial for the Galois Field. The LFSR based on a serial multiplication structure has less complex circuits than array structures and hybrid structures. It is efficient to use the LFSR structure for systems with limited area and power consumption. The prior finite-field multipliers need 3${\cdot}$m flip-flops for multiplication of m-bit polynomials. Consequently, they need 6${\cdot}$m latches because one flip-flop consists of two latches. The proposed finite-field multiplier requires only 4${\cdot}$m latches for m-bit multiplication, which results in 1/3 smaller area than the prior finite-field multipliers. As a result, it can be used effectively in encryption and error correction devices with low-power consumption and small area.

  • PDF