• 제목/요약/키워드: Galois Actions

검색결과 7건 처리시간 0.02초

FORMULAS OF GALOIS ACTIONS OF SOME CLASS INVARIANTS OVER QUADRATIC NUMBER FIELDS WITH DISCRIMINANT D ≡ 1(mod 12)

  • Jeon, Daeyeol
    • 충청수학회지
    • /
    • 제22권4호
    • /
    • pp.799-814
    • /
    • 2009
  • A class invariant is the value of a modular function that generates a ring class field of an imaginary quadratic number field such as the singular moduli of level 1. In this paper, using Shimura Reciprocity Law, we compute the Galois actions of some class invariants from the generalized Weber functions $\mathfrak{g}_0,\mathfrak{g}_1,\mathfrak{g}_2$ and $\mathfrak{g}_3$ over quadratic number fields with discriminant $D{\equiv}1$ (mod 12).

  • PDF

GALOIS ACTIONS OF A CLASS INVARIANT OVER QUADRATIC NUMBER FIELDS WITH DISCRIMINANT D≡64(mod72)

  • Jeon, Daeyeol
    • 충청수학회지
    • /
    • 제26권1호
    • /
    • pp.213-219
    • /
    • 2013
  • A class invariant is the value of a modular function that generates a ring class field of an imaginary quadratic number field such as the singular moduli of level 1. In this paper, we compute the Galois actions of a class invariant from a generalized Weber function $g_1$ over imaginary quadratic number fields with discriminant $D{\equiv}64(mod72)$.

GALOIS ACTIONS OF A CLASS INVARIANT OVER QUADRATIC NUMBER FIELDS WITH DISCRIMINANT D ≡ 21 (mod 36)

  • Jeon, Daeyeol
    • 충청수학회지
    • /
    • 제24권4호
    • /
    • pp.921-925
    • /
    • 2011
  • A class invariant is the value of a modular function that generates a ring class field of an imaginary quadratic number field such as the singular moduli of level 1. In this paper, using Shimura Reciprocity Law, we compute the Galois actions of a class invariant from a generalized Weber function $g_2$ over quadratic number fields with discriminant $D{\equiv}21$ (mod 36).

GALOIS ACTIONS OF A CLASS INVARIANT OVER QUADRATIC NUMBER FIELDS WITH DISCRIMINANT D ≡ -3 (mod 36)

  • Jeon, Daeyeol
    • 충청수학회지
    • /
    • 제23권4호
    • /
    • pp.853-860
    • /
    • 2010
  • A class invariant is the value of a modular function that generates a ring class field of an imaginary quadratic number field such as the singular moduli of level 1. In this paper, using Shimura Reciprocity Law, we compute the Galois actions of a class invariant from a generalized Weber function $g_2$ over quadratic number fields with discriminant $D{\equiv}-3$ (mod 36).

GALOIS CORRESPONDENCES FOR SUBFACTORS RELATED TO NORMAL SUBGROUPS

  • Lee, Jung-Rye
    • 대한수학회논문집
    • /
    • 제17권2호
    • /
    • pp.253-260
    • /
    • 2002
  • For an outer action $\alpha$ of a finite group G on a factor M, it was proved that H is a, normal subgroup of G if and only if there exists a finite group F and an outer action $\beta$ of F on the crossed product algebra M $\times$$_{\alpha}$ G = (M $\times$$_{\alpha}$ F. We generalize this to infinite group actions. For an outer action $\alpha$ of a discrete group, we obtain a Galois correspondence for crossed product algebras related to normal subgroups. When $\alpha$ satisfies a certain condition, we also obtain a Galois correspondence for fixed point algebras. Furthermore, for a minimal action $\alpha$ of a compact group G and a closed normal subgroup H, we prove $M^{G}$ = ( $M^{H}$)$^{{beta}(G/H)}$for a minimal action $\beta$ of G/H on $M^{H}$.f G/H on $M^{H}$.TEX> H/.

THE ZERO-DIVISOR GRAPH UNDER GROUP ACTIONS IN A NONCOMMUTATIVE RING

  • Han, Jun-Cheol
    • 대한수학회지
    • /
    • 제45권6호
    • /
    • pp.1647-1659
    • /
    • 2008
  • Let R be a ring with identity, X the set of all nonzero, nonunits of R and G the group of all units of R. First, we investigate some connected conditions of the zero-divisor graph $\Gamma(R)$ of a noncommutative ring R as follows: (1) if $\Gamma(R)$ has no sources and no sinks, then $\Gamma(R)$ is connected and diameter of $\Gamma(R)$, denoted by diam($\Gamma(R)$) (resp. girth of $\Gamma(R)$, denoted by g($\Gamma(R)$)) is equal to or less than 3; (2) if X is a union of finite number of orbits under the left (resp. right) regular action on X by G, then $\Gamma(R)$ is connected and diam($\Gamma(R)$) (resp. g($\Gamma(R)$)) is equal to or less than 3, in addition, if R is local, then there is a vertex of $\Gamma(R)$ which is adjacent to every other vertices in $\Gamma(R)$; (3) if R is unit-regular, then $\Gamma(R)$ is connected and diam($\Gamma(R)$) (resp. g($\Gamma(R)$)) is equal to or less than 3. Next, we investigate the graph automorphisms group of $\Gamma(Mat_2(\mathbb{Z}_p))$ where $Mat_2(\mathbb{Z}_p)$ is the ring of 2 by 2 matrices over the galois field $\mathbb{Z}_p$ (p is any prime).