• Title/Summary/Keyword: Gallic acid (GA)

Search Result 25, Processing Time 0.023 seconds

Synthesis of a Novel Compound from Gallic Acid and Linoleic Acid and its Biological Functions

  • Jo, Cheo-Run;Jeong, Ill-Yun;Lee, Na-Young;Kim, Kwan-Soo;Byun, Myung-Woo
    • Food Science and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.317-320
    • /
    • 2006
  • Octadeca-9,12-dienyl-3,4,5-hydroxybenzoate (GA-LA) was chemically synthesized from gallic acid and linoleic acid ester, and its biological functions were tested. Radical-scavenging activity of GA-LA was comparable to those of gallic and ascorbic acids at 0.24 mM, and tyrosinase inhibition effect was higher than that of ascorbic acid. Gallic and linoleic acids did not show any tyrosinase activity. Results of cyclooxygenase (COX) inhibition effect indicate GA-LA has higher selectivity in COX-1 inhibition. GA-LA from gallic and linoleic acids could be used as functional reagent for antioxidative, skin-whitening, and anti-inflammatory effects in food, pharmaceutrical, and cosmetic industries.

Inhibitory Effect of Gallic acid on Production of Interleukins in Mouse Macrophage Stimulated by Lipopolysaccharide (Gallic acid가 Lipopolysaccharide로 활성화된 마우스 대식세포의 인터루킨 생성에 미치는 영향)

  • Park, Wan-Su
    • Journal of Pharmacopuncture
    • /
    • v.13 no.3
    • /
    • pp.63-71
    • /
    • 2010
  • Objectives: Gallic acid (GA) is the major component of tannin which could be easily founded in various natural materials such as green tea, red tea, grape juice, and Corni Fructus. The purpose of this study is to investigate the effect of Gallic acid (GA) on production of interleukin (IL) in mouse macrophage Raw 264.7 cells stimulated by lipopolysaccharide (LPS). Methods: Productions of interleukins were measured by High-throughput Multiplex Bead based Assay with Bio-plex Suspension Array System based on $xMAP^{(R)}$ (multi-analyte profiling beads) technology. Firstly, cell culture supernatant was obtained after treatment with LPS and GA for 24 hour. Then, it was incubated with the antibody-conjugated beads for 30 minutes. And detection antibody was added and incubated for 30 minutes. And Strepavidin-conjugated Phycoerythrin (SAPE) was added. After incubation for 30 minutes, the level of SAPE fluorescence was analyzed on Bio-plex Suspension Array System and concentration of interleukin was determined. Results: The results of the experiment are as follows. 1. GA significantly inhibited the production of IL-3, IL-10, IL-12p40, and IL-17 in LPS-induced mouse macrophage RAW 264.7 cells at the concentration of 25, 50, 100, 200 uM (p<0.05). 2. GA significantly inhibited the production of IL-6 in LPS-induced mouse macrophage RAW 264.7 cells at the concentration of 50, 100, 200 uM (p<0.05). 3. GA diminished the production of some cytokine such as IL-4, IL-5, and IL-13 in LPS-induced mouse macrophage RAW 264.7 cells. 4. GA did not show the inhibitory effect on the production of IL-$1{\alpha}$ and IL-9 in LPS-induced mouse macrophage RAW 264.7 cells. Conclusions: These results suggest that GA has anti-inflammatory activity related with its inhibitory effects on the production of interleukins such as IL-3, IL-10, IL-12p40, IL-17, and IL-6 in LPS-induced macrophages.

Anti-Cancer Effect of Gallic Acid in CT-26 Cells Inoculated Cancer Bearing Balb/C Mice (CT-26 세포 암 유발 마우스에서 Gallic acid의 항암 효과)

  • Lee, Jung Hee;Choi, Hwa-Jung;Kim, Pom-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.10
    • /
    • pp.6215-6222
    • /
    • 2014
  • This study examined the anti-cancer activity of gallic acid(GA) isolated from P. suffruticosa. was analyzed by ESI-MS, $^1H$-NMR, and $^{13}C$-NMR. The anti-cancer activity was evaluated by measuring the cancer size in CT-26 cancer-allograft mice treated with GA(100 mg/kg p.o) for 14 days. The change in body weight, acute toxicity, weight change of the liver and spleen and biomaker of the liver were evaluated in the mice after the GA treatment. As a result, the cancer size of the CT-26 cancer-allograft mice treated with GA decreased significantly compared to that of the cancer mice without significant changes in weight loss (p<0.05) and acute toxicity. The weight of the liver and spleen and ALT, AST and LPO levels increased by cancer were decreased significantly after the GA treatment, and the GSH levels decreased by cancer were increased significantly with the GA treatment (p<0.05). Therefore, GA could be an attractive lead for the development of anticancer agents.

Inhibitory Effect of Gallic Aicd on TNF-α-induced matrix metalloproteinase-1 (MMP-1) in HaCaT Cells (HaCaT세포에서 TNF-α에 의해 유도되는 MMP-1에 대한 Gallic Aicd의 저해 효과)

  • Kim, Pom-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5778-5784
    • /
    • 2013
  • In order to develop anti-wrinkle agent, we measured the anti-oxidative activity of gallic acid (GA) from Paeonia suffruticosa Andrews and investigated its cytotoxicity in HaCaT cells and then investigated its effect on tumor necrosis factor alpha (TNF-${\alpha}$)-induced matrix metalloproteinase-1 (MMP-1) mRNA, protein expressions and secretion in same cells. GA showed anti-oxidative activity with $IC_{50}$ of 30 ${\mu}g/mL$ and its activity was higher than that of butylated hydroxyanisol (BHA). GA showed weak cytotoxicity with high concentration (200 ${\mu}g/mL$) in HaCaT cells. MMP-1 mRNA, protein expression and secretion induced by tumor necrosis factor alpha (TNF-${\alpha}$) in HaCaT cells were significantly decreased by treatment of GA with dose-dependent manner(p<0.05). Therefore, our findings suggest that GA can be useful as an active ingredient for cosmeceuticals of anti-wrinkle effects.

Gold Nanoparticles Enhance the Anticancer Activity of Gallic Acid against Cholangiocarcinoma Cell Lines

  • Rattanata, Narintorn;Daduang, Sakda;Wongwattanakul, Molin;Leelayuwat, Chanvit;Limpaiboon, Temduang;Lekphrom, Ratsami;Sandee, Alisa;Boonsiri, Patcharee;Chio-Srichan, Sirinart;Daduang, Jureerut
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.16
    • /
    • pp.7143-7147
    • /
    • 2015
  • Gold nanoparticles (GNPs) were conjugated with gallic acid (GA) at various concentrations between 30 and $150{\mu}M$ and characterized using transmission electron microscopy (TEM) and UV-Vis spectroscopy (UV-VIS). The anticancer activities of the gallic acid-stabilized gold nanoparticles against well-differentiated (M213) and moderately differentiated (M214) adenocarcinomas were then determined using a neutral red assay. The GA mechanism of action was evaluated using Fourier transform infrared (FTIR) microspectroscopy. Distinctive features of the FTIR spectra between the control and GA-treated cells were confirmed by principal component analysis (PCA). The surface plasmon resonance spectra of the GNPs had a maximum absorption at 520 nm, whereas GNPs-GA shifted the maximum absorption values. In an in vitro study, the complexed GNPs-GA had an increased ability to inhibit the proliferation of cancer cells that was statistically significant (P<0.0001) in both M213 and M214 cells compared to GA alone, indicating that the anticancer activity of GA can be improved by conjugation with GNPs. Moreover, PCA revealed that exposure of the tested cells to GA resulted in significant changes in their cell membrane lipids and fatty acids, which may enhance the efficacy of this anticancer activity regarding apoptosis pathways.

Gallic Acid Enhancement of Gold Nanoparticle Anticancer Activity in Cervical Cancer Cells

  • Daduang, Jureerut;Palasap, Adisak;Daduang, Sakda;Boonsiri, Patcharee;Suwannalert, Prasit;Limpaiboon, Temduang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.1
    • /
    • pp.169-174
    • /
    • 2015
  • Cervical cancer (CxCa) is the most common cancer in women and a prominent cause of cancer mortality worldwide. The primary cause of CxCa is human papillomavirus (HPV). Radiation therapy and chemotherapy have been used as standard treatments, but they have undesirable side effects for patients. It was reported that gallic acid has antioxidant, antimicrobial, and anticancer activities. Gold nanoparticles are currently being used in medicine as biosensors and drug delivery agents. This study aimed to develop a drug delivery agent using gold nanoparticles conjugated with gallic acid. The study was performed in uninfected (C33A) cervical cancer cells, cervical cancer cells infected with HPV type 16 (CaSki) or 18 (HeLa), and normal Vero kidney cells. The results showed that GA inhibited the proliferation of cancer cells by inducing apoptosis. To enhance the efficacy of this anticancer activity, 15-nm spherical gold nanoparticles (GNPs) were used to deliver GA to cancer cells. The GNPs-GA complex had a reduced ability compared to unmodified GA to inhibit the growth of CxCa cells. It was interesting that high-concentration ($150{\mu}M$) GNPs-GA was not toxic to normal cells, whereas GA alone was cytotoxic. In conclusion, GNPs-GA could inhibit CxCa cell proliferation less efficiently than GA, but it was not cytotoxic to normal cells. Thus, gold nanoparticles have the potential to be used as phytochemical delivery agents for alternative cancer treatment to reduce the side effects of radiotherapy and chemotherapy.

Inhibitory Effects of Gallic Acid Isolated from Caesalpinia mimosoides Lamk on Cholangiocarcinoma Cell Lines and Foodborne Pathogenic Bacteria

  • Rattanata, Narintorn;Klaynongsruang, Sompong;Daduang, Sakda;Tavichakorntrakool, Ratree;Limpaiboon, Temduang;Lekphrom, Ratsami;Boonsiri, Patcharee;Daduang, Jureerut
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.3
    • /
    • pp.1341-1345
    • /
    • 2016
  • Gallic acid was isolated from Caesalpinia mimosoides Lamk and the structure s identified based on spectroscopic analysis and comparison with authentic compound. In this study we compared the ability of natural gallic acid (nGA) and commercial gallic acid (cGA) to inhibit the proliferation of cholangiocarcinoma cell lines (M213, M214) and foodborne pathogenic bacteria (Salmonella spp. and Plesiomonas shigelloides). Both nGA and cGA had the same inhibitory effects on cell proliferation by inducing apoptosis of cholangiocarcinoma cell lines. In addition, nGA inhibited growth of foodborne pathogenic bacteria in the same manner as cGA. Our results suggest that nGA from Caesalpinia mimosoides Lamk is a potential anticancer and antibacterial compound. However, in vivo studies are needed to elucidate the specific mechanisms involved.

Inhibitory Effect of Gallic acid on Production of Chemokine and Growth Factor in Mouse Macrophage Stimulated by Lipopolysaccharide (Gallic acid가 Lipopolysaccharide로 활성화된 마우스 대식세포의 케모카인과 성장인자 생성에 미치는 영향)

  • Park, Wan-Su
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.24 no.4
    • /
    • pp.586-591
    • /
    • 2010
  • Chemokine and Growth Factor are major mediumtors of immuno-inflammatory pathway. The purpose of this study is to investigate whether productions of Chemokine and Growth Factor in lipopolysaccharide (LPS)-induced mouse macrophage RAW 264.7 cells are modulated by Gallic acid (GA), which is easily founded in tannin-containing natural materials such as red wine, green tea, grape juice, and Corni Fructus. Productions of Chemokine and Growth Factor were analyzed by High-throughput Multiplex Bead based Assay with Bio-plex Suspension Array System based on $xMAP^{(R)}$ (multi-analyte profiling beads) technology. At first, cell culture supernatant was obtained after treatment with LPS and GA for 24 hour. Then, the antibody-conjugated beads were added and incubated for 30 minutes. After incubation, detection antibody was added and incubated for 30 minutes. And Strepavidin-conjugated Phycoerythrin (SAPE) was added. After incubation for 30 minutes, the level of SAPE fluorescence was analyzed on Bio-plex Suspension Array System. Based on fluorescence intensity, concentrations of Chemokine and Growth Factor were determined. The results of the experiment are as follows. GA significantly inhibited the production of interferon-inducible protein (IP)-10, keratinocyte-derived chemokine(KC), and vascular endothelial growth factor (VEGF) in LPS-induced RAW 264.7 cells at the concentration of 25, 50, 100, 200 uM (p<0.05). GA significantly inhibited the production of monocyte chemoattractant protein-1(MCP-1) and macrophage-colony stimulating factor(M-CSF) in LPS-induced RAW 264.7 cells at the concentration of 50, 100, 200 uM (p<0.05). GA diminished the production of granulocyte macrophage-colony stimulating factor (GM-CSF) in LPS-induced RAW 264.7 cells. But GA did not show the inhibitory effect on the production of leukemia inhibitory factor (LIP) and macrophage inflammatory protein (MIP)-2 in LPS-induced RAW 264.7 cells. These results suggest that GA has the immuno-modulating activity related with its inhibitory effects on the production of IP-10, KC, MCP-1, VEGF, and M-CSF in LPS-induced macrophages.

Gallic acid caused cultured mice TM4 Sertoli cells apoptosis and necrosis

  • Li, Wanhong;Yue, Xiangpeng;Li, Fadi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.5
    • /
    • pp.629-636
    • /
    • 2019
  • Objective: The study was designed to determine the cytotoxic effect of gallic acid (GA), obtained by the hydrolysis of tannins, on mice TM4 Sertoli cells apoptosis. Methods: In the present study, non-tumorigenic mice TM4 Sertoli cells were treated with different concentrations of GA for 24 h. After treatment, cell viability was evaluated using WST-1, mitochondrial dysfunction, cells apoptosis and necrosis was detected using JC-1, Hoechst 33342 and propidium iodide staining. The expression levels of Cyclin B1, proliferating cell nuclear antigen (PCNA), Bcl-2-associated X protein (BAX), and Caspase-3 were also detected by quantitative real-time polymerase chain reaction and Western-blotting. Results: The results showed that 20 to $400{\mu}M$ GA inhibited viability of TM4 Sertoli cells in a dose-dependent manner. Treatment with $400{\mu}M$ GA significantly inhibited PCNA and Cyclin B1 expression, however up-regulated BAX and Caspase-3 expression, caused mitochondrial membrane depolarization, activated Caspase-3, and induced DNA damage, thus, markedly increased the numbers of dead cells. Conclusion: Our findings showed that GA could disrupt mitochondrial function and caused TM4 cells to undergo apoptosis and necrosis.

Esters of Substituted Benzoic Acids as Anti-thrombotic Agents

  • Yunchoi, Hye-Sook;Kim, Monn-Hee;Jung, Ki-Hwa
    • Archives of Pharmacal Research
    • /
    • v.19 no.1
    • /
    • pp.66-70
    • /
    • 1996
  • Aliphatic esters of protocatechuic acid (PA, 1), vanillic acid (VA, 9) and gallic acid (GA, 18) were prepared and their anti-thrombotic effects were evaluated in the mouse model of thrombosis. The aliphatic groups included methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, n-amyl and cyclohexyl. n-Amyl ester of PA (7), i-propyl and cyclohexyl esters of VA (13 and 17 respectively) and ethyl ester of GA (20) treatment significantly lowered the death rate and increased the recovery from paralysis due to the thrombotic challenge. From the limited analogs available, it was tentatively concluded that the structural conformation, where carboxy oxygen (=O or -O) of the carboxyl group (COOH) at $C_1$ and the oxygen function at $C_3(either\; OH\; or\; OCH_3)$ are closely situated, is favorable for the esters of PA, VA and GA to be more antithrombotic.

  • PDF