• Title/Summary/Keyword: Gallate

Search Result 436, Processing Time 0.029 seconds

Anti-inflammatory Effects of Resveratrol, (-)-Epigallocatechin-3-gallate and Curcumin by the Modulation of Toll-like Receptor Signaling Pathways (Toll-like receptors 신호전달체계 조절을 통한 resveratrol, (-)-epigallocatechin-3-gallate, curcumin의 항염증 효과)

  • Youn, Hyung-Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.5
    • /
    • pp.481-487
    • /
    • 2007
  • Toll-like receptors (TLRs) induce innate immune responses that are essential for host defenses against invading microbial pathogens, thus leading to the activation of adaptive immune responses. In general, TLRs have two major downstream signaling pathways: the MyD88- and TRIF-dependent pathways, which lead to the activation of $NF-{\kappa}B$ and IRF3. Numerous studies have demonstrated that certain phytochemicals possessing anti-inflammatory effects inhibit $NF-{\kappa}B$ activation induced by pro-inflammatory stimuli, including lipopolysaccharides and $TNF{\alpha}$. However, the direct molecular targets for such anti-inflammatory phytochemicals have not been fully identified. Identifying the direct targets of phytochemicals within the TLR pathways is important because the activation of TLRs by pro-inflammatory stimuli can induce inflammatory responses that are the key etiological conditions in the development of many chronic inflammatory diseases. In this paper we discuss the molecular targets of resveratrol, (-)-epigallocatechin-3-gallate (EGCG), and curcumin in the TLR signaling pathways. Resveratrol specifically inhibited the TRIF pathway in TLR3 and TLR4 signaling, by targetting TBK1 and RIP1 in the TRIF complex. Furthermore, EGCG suppressed the activation of IRF3 by targetting TBK1 in the TRIF-dependent signaling pathways. In contrast, the molecular target of curcumin within the TLR signaling pathways is the receptor itself, in addition to $IKK{\beta}$. Together, certain dietary phytochemicals can modulate TLR-derived signaling and inflammatory target gene expression, and in turn, alter susceptibility to microbial infection and chronic inflammatory diseases.

Inhibition of Gap Junctional Intercellular Communication in Rat Liver Epithelial Cells Induced by BHT and Propyl Gallate (간상피세포에서 BHT와 propyl gallate에 의한 gap junctional intercellular communication 억제 효과)

  • Kim, Ji-Sun;Kim, Sung-Ran;Ahn, Ji-Yun;Ha, Tae-Youl;Kang, Kyoung-Sun;Kim, Sun-A
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.5
    • /
    • pp.558-563
    • /
    • 2007
  • This study was conducted to analyze the cytotoxic effects of butylated hydroxytoluene (BHT) and propyl gallate (PG) in WB-F344 rat liver epithelial cells. Here we measured the inhibition level of gap junctional intercellular communication (GJIC) and elucidated the relationships between GJIC and mitogen-activated protein kinases (MAPKs) such as ERK, JNK, and p38. The cytotoxicities of BHT and PG appeared at concentrations of 1.0mM and 0.25mM, respectively, in the WB-F344 cells; and GJIC inhibition, which was analyzed by a scrape-loading/dye transfer assay and Western blotting analysis, appeared at 0.6mM for BHT and 0.1mM for PG, respectively. Also, the phosphorylations of Cx43, ERK, JNK, and p38 increased in dose-dependent manners. This suggests that BHT and PG treatments inhibited GJIC by the phosphorylation of MAPKs prior to cell damage.

Green Tea Extract (CUMC6335), not Epigallocatechin Gallate, Cause Vascular Relaxation in Rabbits

  • Lim, Dong-Yoon;Baek, Young-Joo;Lee, Eun-Bang
    • Natural Product Sciences
    • /
    • v.10 no.5
    • /
    • pp.228-236
    • /
    • 2004
  • The aim of the present study was to examine whether green tea extract (CUMC6335) affects the blood pressure and the isolated aortic contractility of the rabbit in comparison with one of the most powerful active catechins, epigallocatechin gallate (EGCG). The phenylephrine $(1-10\;{\mu}M)-induced$ contractile responses were greatly inhibited in the presence of CUMC6335 (0.3-1.2 mg/ml). Also, high potassium (56 mM)-induced contractile responses were depressed in high concentration (0.6-1.2 mg/ml), but not affected in low concentration CUMC6335 (0.3 mg/ml). However, epigallocatechin gallate $(EGCG,\;4-12\;{\mu}g/ml)$ did not affect the contractile responses evoked by phenylephrine and high $K^+$. The infusion of CUMC6335 with a rate of 20 mg/kg/30 min made a significant reduction in pressor responses induced by intravenous norepinephrine. However, EGCG (1 mg/kg/30 min) did not affect them. Collectively, these results obtained from the present study suggest that intravenous CUMC6335 causes depressor action in the anesthetized rat at least partly through the blockade of adrenergic ${\alpha}_1-receptors$. CUMC6335 also causes the relaxation in the isolated aortic strips of the rabbit partly via the blockade of adrenergic ${\alpha}_1-receptors$, in addition to the unknown direct mechanism. It seems that there is no species difference in the vascular effect between the rat and the rabbit.

HPLC analysis of Phenolic Substances and Anti-Alzheimer's Activity of Korean Quercus Species

  • Nugroho, Agung;Song, Byong-Min;Seong, Su Hui;Choi, Jae Sue;Choi, Jongwon;Choi, Ji-Yeon;Park, Hee-Juhn
    • Natural Product Sciences
    • /
    • v.22 no.4
    • /
    • pp.299-306
    • /
    • 2016
  • This study aimed to establish the quantitative method to analyze the content of peroxynitrite-scavengers belonging to polyphenols in six Korean Quercus species (Quercus mongolica, Q. dentata, Q. acutissima, Q. alienta, Q. serrata, and Q. variabilis) by HPLC. The twelve peroxynitrite-scavengers, flavanols (catechins: (+)-catechin, (-)-epicatechin, and (-)-epigallocatechin), flavonols (kaempferol and quercetin), flavonol glycosides (astragalin, quercitrin, and isoquercitrin), flavonol acylated glycosides (astragalin 6''-gallate and isoquercitrin 6''-gallate), gallic acid and its dimer (ellagic acid) were analyzed by HPLC. Further, anti-Alzheimer's activity was assayed in a passive avoidance testusing mice by measuring the retention latency (sec), the concentration of acetylcholine (ACh), and acetylcholinesterase (AChE) activity. Simultaneous analysis of the extracts of the six Quercus leaves was achieved on a Capcell C18 column ($5{\mu}m$, $250mm{\times}4.6mm\;i.d.$) with a gradient elution of 0.05% HAc and 0.05% HAc in $CH_3CN$. In the extract of Q. mongolica leaves, the content of gallic acid (32.53 mg/g), (+)-catechin (28.78 mg/g), (-)-epicatehin (22.03 mg/g), astragalin 6''-gallate (20.94 mg/g), and isoquercitrin 6''-gallate (44.11 mg/g) and peroxynitrite-scavenging activity ($IC_{50}$, $0.831{\mu}g/ml$) were high. This extract delayed the retention latency and inhibited acetylcholinesterase activity in scopolamine-induced memory impairment of mice, suggesting that it has anti-Alzheimer's activity.

Increase of Epigallocatechin in Green Tea Extract by Lactic Acid Bacteria Fermentation (젖산균 발효를 통한 녹차 추출물의 Epigallocatechin 함량의 증대)

  • Choi, Chan-Yeong;Park, Eun-Hee;Ju, Yoong-Woon;Kim, Myoung-Dong
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.1
    • /
    • pp.62-67
    • /
    • 2016
  • Hydrolytic enzyme activities, including those of ${\beta}$-glucosidase, ${\beta}$-glucuronidase, ${\beta}$-xylosidase, ${\beta}$-galactosidase, ${\beta}$-arabinofuranosidase, ${\beta}$-arabinosidase, and ${\beta}$-arabinopyranosidase, which are useful for bioconversion, were explored in lactic acid bacteria isolated from Korean traditional fermented foods. Nine bacterial strains were selected for the fermentation of green tea extract prepared by supercritical fluid extraction. Changes in the concentrations of catechin, epicatechin, epicatechin gallate, epigallocatechin, and epigallocatechin-3-gallate in green tea extract were investigated after fermentation by the selected lactic acid bacteria strains. The strain Leuconostoc mesenteroides MBE1424, which showed the highest ${\beta}$-glucuronidase enzyme activity among the tested bacterial strains, increased the epigallocatechin content of the green tea extract by 60%. In addition, L. mesenteroides MBE1424 was more resistant than the control strain at high temperature and showed a maximum specific growth rate at $40^{\circ}C$. L. mesenteroides MBE1424 was presumed to have an enzyme system containing ${\beta}$-glucuronidase with utility in the bioconversion of green tea extract.

The Effect of Intrathecal Epigallocatechin Gallate on the Development of Antinociceptive Tolerance to Morphine (척수강 내로 투여한 Epigallocatechin Gallate이 모르핀의 항침해 작용에 대한 내성 발생에 미치는 효과)

  • Kim, Woong Mo;Bae, Hong Beom;Choi, Jeong Il
    • The Korean Journal of Pain
    • /
    • v.22 no.3
    • /
    • pp.199-205
    • /
    • 2009
  • Background: A major ingredient of green tea is epigallocatechin-3-gallate (EGCG), and this is known to have many beneficial effects for cancer prevention and also on the cardiovascular system and neurodegenerative diseases through its anti-oxidant, anti-angiogenic, anti-inflammatory, lipid-lowering and neuroprotective properties. Its actions on nociception and the spinal nervous system have been examined in only a few studies, and in these studies EGCG showed an antinociceptive effect on inflammatory and neuropathic pain, and a neuroprotective effect in motor neuron disease. This study was performed to investigate the effect of EGCG on acute thermal pain and the development of morphine tolerance at the spinal level. Methods: The experimental subjects were male Sprague-Dawley rats and the Hot-Box test was employed. A single or double-lumen intrathecal catheter was implanted at the lumbar enlargement for drug administration. An osmotic pump was used to infuse morphine for 7 days for induction of morphine tolerance. EGCG was injected repeatedly for 7 days at twice a day through the intrathecal catheter. Results: Intrathecal EGCG increased the paw withdrawal latency (PWL) after repeated administration for 7 days at twice a day, but this did not happen with administering on single bolus injection of EGCG. In addition, the antinociceptive effect of intrathecal morphine was not affected by co-administration with EGCG. A continuous 7-day infusion of morphine caused a significant decrease of the PWL in the control group (M + S, morphine plus saline). In contrast, intrathecal EGCG injection over 7 days blocked the decrease of the PWL in the experiment group (M + E, morphine plus EGCG). Conclusions: Intrathecal ECGC produced a weak antinociceptive effect for acute thermal pain, but it did not change the morphine's analgesic effect. However, the development of antinociceptive tolerance to morphine was attenuated by administering intrathecal EGCG.

Effect of Epigallocatechin Gallate on Apoptosis in MDA-MB-231 Human Breast Cancer Cells (Epigallocatechin Gallate가 인체 유방암 세포인 MDA-MB-231의 세포사멸에 미치는 영향)

  • Hong, Eun-Jung;Kim, Woo-Kyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.9
    • /
    • pp.1114-1119
    • /
    • 2008
  • Among the numerous polyphenols isolated from green tea, epigallocatechin gallate (EGCG) is a predominate and is considered to be a major therapeutic agent. To elucidate the mechanical insights of anti-tumor effect, EGCG was applied to human breast cancer MDA-MB-231 cells. We investigated the effect of EGCG on protein and mRNA expression of proteins related to cell apoptosis in MDA-MB-231 human breast cancer cell lines. We also identified caspase-3 activity. We cultured MDA-MB-231 cells in the presence of 0, 5, 10, and $20\;{\mu}M$ of EGCG. Protein and mRNA expression of bcl-2 were decreased dose-dependently in cells treated with EGCG. However, protein and mRNA expression of bax were increased (p<0.05). Caspase-3 activities were increased dose-dependently in cells treated with EGCG. These results suggest that EGCG induces cell apoptosis by increase of caspase activity through decreasing of protein and mRNA expression of bcl-2 and increasing of protein and mRNA expression of bax.

Antioxidative Effects of various Antioxidants on the Soybean Oil (대두유에 있어서 항산화제 종류에 따른 항산화력의 비교)

  • Yoon, Soo-Hong;Kim, Jong-Won
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.17 no.1
    • /
    • pp.19-23
    • /
    • 1988
  • The natural antioxidants such as ${\alpha}-tocopherol$, NDGA, proply gallate and sesamol, and synthetic antioxidants, BHA were used to compare antioxidative effects of those antioxidants from tile physico-chemical properties and fatty acid composition changes in the soybean oil during storage. The oils were stored at $25^{\circ}C$ for 2 weeks after heat treatment. Natural antioxidants were less effective than BHA but effect of ${\alpha}-tocopherol$ was very similar to that of BHA. The order of antioxidative effect was BHA, ${\alpha}-tocopherol$, NDCA propyl gallate and sesamol. The relative contents of linoleic acid and linolenic acid was decreased as the degree of oxidative rancidity was increased. whereas content of oleic acid and palmitic acid was increased. The content of linoleic acid and linolenic acid did not decreased by addition of BHA and ${\alpha}-tocopherol$.

  • PDF

Effect of Tea Catechin, EGCG (Epigallocatechin Gallate) on Killing of Oral Bacteria (차 카테킨 EGCG (Epigallocatechin Gallate)의 구강세균에 대한 살균효과)

  • Yu Mi-Ok;Chun Jae-Woo;Oh Kye-Heon
    • Korean Journal of Microbiology
    • /
    • v.40 no.4
    • /
    • pp.364-366
    • /
    • 2004
  • The purpose of this work was to investigate the effect oftea catechin, epigallocatechin gallate (EGCG) on killing of oral bacteria. The antibacterial activity of 2.5 mg/ml and 5.0 mg/ml EGCG was investigated for target bacteria of which initial cell number was approximately adjusted to $10^{7}ml$. The antibacterial activity of EGCG was proportional to the concentration according to colony-forming unit(CFU) of target bacteria enumerating on selective and complex media. Streptococcus mutans and Streptococcus sobrinus at 5mg/ml EGCG were completely killed within 8 hrs. Lactobacillus plantarum and Lactobacillus acidophilus were also killed within 2 hrs and 4 hrs under the same conditions, respectively. Oral bacteria at 2.5 mg/ml EGCG were completely killed within 10 hr. Colony numvers of S. mitis and S. salivarius treated with 2.5 mg/ml EGCG were decreased on MS solid media and no colony was observed on the media within 12 hrs. In consequence, EGCG would be a natural and effective compound that kill oral bacteria being caused of bad breath, plaque and gingivitis, and for preventing and treating dental caries.

Determination of Amounts of Catechin and Caffeine in Green Tea Beverages (녹차음료에서의 카테킨 및 카페인 함량 조사)

  • Kim, Dae-Hwan;Lee, Myung-Jin;Kim, Yang-Hee;Ryu, Kyong-Sin;Lee, Ji-yeon;Park, Kwang-Hee
    • The Korean Journal of Food And Nutrition
    • /
    • v.31 no.3
    • /
    • pp.416-424
    • /
    • 2018
  • The physiologically advantageous aspects of green tea have been identified recently and green tea has been a favorite drink of many people. Due to the increased awareness of green tea's positive effects on human health, the demand for foods containing green tea has increased. This has led to the development of diverse green tea-related beverages; thereby many companies in Korea have put a wide variety of manufactured green tea beverages on the market. However, the components within green tea beverages have not been examined in Korea yet. In this study, we investigated the contents of the physiologically functional materials found in green tea, such as catechin, catechin gallate, epicatechin, epicatechin gallate, epigallocatecin gallate, gallocatechin gallate and caffeine. Fifty-six green tea products purchased from the local grocery stores and cafes were analyzed using high performance liquid chromatography (HPLC) analysis. As a result, all tested products contained catechin and caffeine, although the amount of each component was largely different. The total amount of catechin derivatives in the manufactured green tea beverages purchased from cafes was 263.17 mg/L, while they were 61.99 mg/L in the beverages purchased from the local grocery stores. And, to the almost samples the amount of caffeine was proportional to the amount of catechin.