• Title/Summary/Keyword: Galerkin's approach

Search Result 61, Processing Time 0.015 seconds

Dynamic Stability of a Flexible Cylinder Subjected to Inviscid Flow in a Coaxial Cylindrical Duct Based on Spectral Method (스펙트럼 배치방법에 의한 원형도관내의 비점성유동장에 놓인 유연성 실린더의 안정성 분석)

  • Sim, Woo-Gun;Bae, Yoon-Yeong
    • Nuclear Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.212-224
    • /
    • 1994
  • A numerical method has been developed for studying the dynamics of a flexible cylinder in a coaxial cylindrical duct, immersed in inviscid flow. The unsteady inviscid fluid-dynamic force acting on the oscillating cylinder has been estimated more rigorously by means of a spectral collocation method without simplification of governing equations. This numerical approach is applicable to the system haying wider annular gap and/or shorter length of cylinder as compared to existing potential theory. The governing equation of the unsteady flow was obtained from Laplace equation. The equation of cylinder motion coupled with the fluid motion was discretized by Galerkin's method, from which the dynamic behaviour of the system has been evaluated. The effect of the length of the cylinder and the annular gap on the critical flour velocity, where the system loses stability by buckling, was investigated. To validate the numerical method, the potential flow theory developed by Hobson based on thin film approximation has been improved. Typical results of the present numerical theory on the dynamics and stability of the system are compared with those of available existing theory and the present approximate results. Good agreement was found between the results. It was also found that a nondimensional critical flow velocity becomes larger as increasing the annular gap and decreasing the length of cylinder.

  • PDF