• Title/Summary/Keyword: Galerkin' method

Search Result 830, Processing Time 0.021 seconds

Modeling radon diffusion equation in soil pore matrix by using uncertainty based orthogonal polynomials in Galerkin's method

  • Rao, T.D.;Chakraverty, S.
    • Coupled systems mechanics
    • /
    • v.6 no.4
    • /
    • pp.487-499
    • /
    • 2017
  • This paper investigates the approximate solution bounds of radon diffusion equation in soil pore matrix coupled with uncertainty. These problems have been modeled by few researchers by considering the parameters as crisp, which may not give the correct essence of the uncertainty. Here, the interval uncertainties are handled by parametric form and solution of the relevant uncertain diffusion equation is found by using Galerkin's Method. The shape functions are taken as the linear combination of orthogonal polynomials which are generated based on the parametric form of the interval uncertainty. Uncertain bounds are computed and results are compared in special cases viz. with the crisp solution.

Fatigue Crack Growth Analysis by EFG Method in Steel Components with Multiple Cracks (EFG법을 사용한 다수균열 함유 강부재의 피로균열 성장거동 해석)

  • 이상호;윤영철
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.4
    • /
    • pp.691-700
    • /
    • 1999
  • 본 연구에서는 요소를 사용하지 않는 새로운 해석방법인 EFG(Element-Free Galerkin)법을 사용하여 복수의 초기균열을 지닌 강재가 반복피로하중을 받는 경우 균열들이 점진적으로 성장하여 부재가 파단에 이르는 과정을 해석적으로 규명하였다. 이를 위하여 본 연구에서는 일반적인 피로균열성장법칙을 EFG법을 이용한 균열해석 알고리즘에 적용하여 복수의 균열들이 각각의 응력상태에 따라 차별적으로 성장해 나가는 과정을 해석할 수 있는 알고리즘을 도입하고 이를 바탕으로 다양한 하중상태하에서 복수의 균열들의 성장경로를 추정함과 동시에 이에 따른 잔존수명을 산정할 수 있는 기법을 제시하였다. 본 연구에서 제안된 해석방법을 피로균열 발생빈도가 큰 몇가지의 강부재 형태에 적용해 본 결과 다수균열 함유 부재의 피로균열 성장거동과 균열들의 피로수명을 성공적으로 예측할 수 있었다.

  • PDF

Beam Vibration Suppression with Translational and Rotational Damped Dynamic Vibration Absorbers (병진 및 회전 감쇠동흡진기를 사용한 보의 진동저감)

  • Park, Sung Gyu;Lee, Shi Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.6_spc
    • /
    • pp.721-728
    • /
    • 2016
  • The combined rotational and translational dynamic vibration absorbers (DVA) with no dampers for the beam vibration control can effectively isolate the vibration within the external excitation force region. This paper investigates the damping efficacy for the combined rotational and translational dynamic vibration absorbers to impose some robustness to the DVA system for the excitation force frequency variation. The beam is assumed to be subjected to a concentrated harmonic excitation force. The solution to the problem is found based on Galerkin method.

Nonlinear buckling and post-buckling of functionally graded CNTs reinforced composite truncated conical shells subjected to axial load

  • Do, Quang Chan;Pham, Dinh Nguyen;Vu, Dinh Quang;Vu, Thi Thuy Anh;Nguyen, Dinh Duc
    • Steel and Composite Structures
    • /
    • v.31 no.3
    • /
    • pp.243-259
    • /
    • 2019
  • This study deals with the nonlinear static analysis of functionally graded carbon nanotubes reinforced composite (FG-CNTRC) truncated conical shells subjected to axial load based on the classical shell theory. Detailed studies for both nonlinear buckling and post-buckling behavior of truncated conical shells. The truncated conical shells are reinforced by single-walled carbon nanotubes which alter according to linear functions of the shell thickness. The nonlinear equations are solved by both the Airy stress function and Galerkin method based on the classical shell theory. In numerical results, the influences of various types of distribution and volume fractions of carbon nanotubes, geometrical parameters, elastic foundations on the nonlinear buckling and post-buckling behavior of FG-CNTRC truncated conical shells are presented. The proposed results are validated by comparing with other authors.

Buckling analysis of nanoplate-type temperature-dependent heterogeneous materials

  • Karami, Behrouz;Karami, Sara
    • Advances in nano research
    • /
    • v.7 no.1
    • /
    • pp.51-61
    • /
    • 2019
  • This paper develops a four-unknown refined plate theory and the Galerkin method to investigate the size-dependent stability behavior of functionally graded material (FGM) under the thermal environment and the FGM having temperature-dependent material properties. In the current study two scale coefficients are considered to examine buckling behavior much accurately. Reuss micromechanical scheme is utilized to estimate the material properties of inhomogeneous nano-size plates. Governing differential equations, classical and non-classical boundary conditions are obtained by utilizing Hamiltonian principles. The results showed the high importance of considering temperature-dependent material properties for buckling analysis. Different influencing parametric on the buckling is studied which may help in design guidelines of such complex structures.

Investigating nonlinear static behavior of hyperelastic plates using three-parameter hyperelastic model

  • Afshari, Behzad Mohasel;Mirjavadi, Seyed Sajad;Barati, Mohammad Reza
    • Advances in concrete construction
    • /
    • v.13 no.5
    • /
    • pp.377-384
    • /
    • 2022
  • The present paper deals with nonlinear deflection analysis of hyperelastic plates rested on elastic foundation and subject to a transverse point force. For modeling of hyperelastic material, three-parameter Ishihara model has been employed. The plate formulation is based on classic plate theory accounting for von-Karman geometric nonlinearity. Therefore, both material and geometric nonlinearities have been considered based on Ishihara hyperelastic plate model. The governing equations for the plate have been derived based on Hamilton's rule and then solved via Galerkin's method. Obtained results show that material parameters of hyperelastic material play an important role in defection analysis. Also, the effects of foundation parameter and load location on plate deflections will be discussed.

An Improved Mesh-free Crack Analysis Technique Using a Singular Basis Function (특이기저함수를 이용하여 개선한 Mesh-free 균열해석기법)

  • 이상호;윤영철
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.3
    • /
    • pp.381-390
    • /
    • 2001
  • In this paper, a new improved crack analysis technique by Element-Free Galerkin(EFG) method is proposed, in which the singularity and the discontinuity of the crack successfully described by adding enrichment terms containing a singular basis function to the standard EFG approximation and a discontinuity function implemented in constructing the shape function across the crack surface. The standard EFG method requires considerable addition of nodes or modification of the model. In addition, the proposed method significantly decreases the size of system of equation compared to the previous enriched EFG method by using localized enrichment region near the crack tip. Numerical example show the improvement and th effectiveness of the previous method.

  • PDF

Parametric Instability of Cylinderical Panels (주기적(週基的)인 압축하중을 받는 원통(円筒) Panel의 동적(動的) 불안정(不安定) 특성(特性)에 관한 연구)

  • Park, Sung Jin;Mikami, Takashi
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.6
    • /
    • pp.737-748
    • /
    • 2000
  • This paper presents a numerical analysis procedure and a characteristics for dynamic of cylindrical panels. The panels with simply-simply or simply-clamped edge supports are subjectes to circumferential compressive or flexural stresses. The differential equations governing vibration and dynamic for these panels are derived by using the fundamental differential equation of the Love-Timoshenko and are solved numerically by the Galerkin method. The panel with simply-clamped edge supports is used a trigonometric function or an eigen function of a beam as a trial function and the effects of trial functions on numerical solutions are displayed. Numerical results are presented to demonstrate the effects of the flexural parameters in natural frequencies and coefficients of critical buckling, and some typical mode shapes of vibration and buckling are also presented.

  • PDF

FLOW PHYSICS ANALYSES USING HIGHER-ORDER DISCONTINUOUS GALERKIN-MLP METHODS ON UNSTRUCTURED GRIDS (비정렬 격자계에서 고차 정확도 불연속 갤러킨-다차원 공간 제한 기법을 이용한 유동 물리 해석)

  • Park, J.S.;Kim, C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.311-317
    • /
    • 2011
  • The present paper deals with the continuous works of extending the multi-dimensional limiting process (MLP) for compressible flows, which has been quite successful in finite volume methods, into discontinuous Galerkin (DG) methods. From the series of the previous, it was observed that the MLP shows several superior characteristics, such as an efficient controlling of multi-dimensional oscillations and accurate capturing of both discontinuous and continuous flow features. Mathematically, fundamental mechanism of oscillation-control in multiple dimensions has been established by satisfaction of the maximum principle. The MLP limiting strategy is extended into DG framework, which takes advantage of higher-order reconstruction within compact stencil, to capture detailed flow structures very accurately. At the present, it is observed that the proposed approach yields outstanding performances in resolving non-compressive as well as compressive flaw features. In the presentation, further numerical analyses and results are going to be presented to validate that the newly developed DG-MLP methods provide quite desirable performances in controlling numerical oscillations as well as capturing key flow features.

  • PDF

Nonlocal-integro-vibro analysis of vertically aligned monolayered nonuniform FGM nanorods

  • Yuan, Yuan;Zhao, Ke;Zhao, Yafei;Kiani, Keivan
    • Steel and Composite Structures
    • /
    • v.37 no.5
    • /
    • pp.551-569
    • /
    • 2020
  • Vibration of vertically aligned-monolayered-nonuniform nanorods consist of functionally graded materials with elastic supports has not been investigated yet. To fill this gap, the problem is examined using the elasticity theories of Eringen and Gurtin-Murdoch. The geometrical and mechanical properties of the surface layer and the bulk are allowed to vary arbitrarily across the length. The nonlocal-surface energy-based governing equations are established using differential-type and integro-type formulations, and solved by employing the Galerkin method by exploiting admissible modes approach and element-free Galerkin (EFG). Through various comparison studies, the effectiveness of the EFG in capturing both nonlocal-differential/integro-based frequencies is proved. A constructive parametric study is also conducted, and the roles of nanorods' diameter, length, stiffness of both inter-rod's elastic layer and elastic supports, power-law index of both constituent materials and geometry, nonlocal and surface effects on the dominant frequencies are revealed.