• Title/Summary/Keyword: Galerkin' method

Search Result 830, Processing Time 0.027 seconds

EXPERIMENTAL RESULTS OF W-CYCLE MULTIGRID FOR PLANAR LINEAR ELASTICITY

  • Yoo, Jae-Chil
    • East Asian mathematical journal
    • /
    • v.14 no.2
    • /
    • pp.399-410
    • /
    • 1998
  • In [3], Franca and Stenberg developed several Galerkin least squares methods for the solution of the problem of linear elasticity. That work concerned itself only with the error estimates of the method. It did not address the related problem of finding effective methods for the solution of the associated-linear systems. In this work, we present computational experiments of W-cycle multigrid method. Computational experiments show that the convergence is uniform as the parameter, $\nu$, goes to 1/2.

  • PDF

Numerical simulation of hot embossing filling (핫엠보싱 충전공정에 관한 수치해석)

  • Kang T. G.;Kwon T. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.43-46
    • /
    • 2005
  • Micro molding technology is a promising mass production technology for polymer based microstructures. Mass production technologies such as the micro injection/compression molding, hot embossing, and micro reaction molding are already in use. In the present study, we have developed a numerical analysis system to simulate three-dimensional non-isothermal cavity filling for hot embossing, with a special emphasis on the free surface capturing. Precise free surface capturing has been successfully accomplished with the level set method, which is solved by means of the Runge-Kutta discontinuous Galerkin (RKDG) method. The RKDG method turns out to be excellent from the viewpoint of both numerical stability and accuracy of volume conservation. The Stokes equations are solved by the stabilized finite element method using the equal order tri-linear interpolation function. To prevent possible numerical oscillation in temperature Held we employ the streamline upwind Petrov-Galerkin (SUPG) method. With the developed code we investigated the detailed change of free surface shape in time during the mold filling. In the filling simulation of a simple rectangular cavity with repeating protruded parts, we find out that filling patterns are significantly influenced by the geometric characteristics such as the thickness of base plate and the aspect ratio and pitch of repeating microstructures. The numerical analysis system enables us to understand the basic flow and material deformation taking place during the cavity filling stage in microstructure fabrications.

  • PDF

Time-discontinuous Galerkin quadrature element methods for structural dynamics

  • Minmao, Liao;Yupeng, Wang
    • Structural Engineering and Mechanics
    • /
    • v.85 no.2
    • /
    • pp.207-216
    • /
    • 2023
  • Three time-discontinuous Galerkin quadrature element methods (TDGQEMs) are developed for structural dynamic problems. The weak-form time-discontinuous Galerkin (TDG) statements, which are capable of capturing possible displacement and/or velocity discontinuities, are employed to formulate the three types of quadrature elements, i.e., single-field, single-field/least-squares and two-field. Gauss-Lobatto quadrature rule and the differential quadrature analog are used to turn the weak-form TDG statements into a system of algebraic equations. The stability, accuracy and numerical dissipation and dispersion properties of the formulated elements are examined. It is found that all the elements are unconditionally stable, the order of accuracy is equal to two times the element order minus one or two times the element order, and the high-order elements possess desired high numerical dissipation in the high-frequency domain and low numerical dissipation and dispersion in the low-frequency domain. Three fundamental numerical examples are investigated to demonstrate the effectiveness and high accuracy of the elements, as compared with the commonly used time integration schemes.

Elastic-plastic Analysis of a 3-Dimensional Inner Crack Using Finite Element Alternating Method (유한요소 교호법을 이용한 삼차원 내부 균열의 탄소성 해석)

  • Park, Jai-Hak;Park, Sang-Yun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.10
    • /
    • pp.1009-1016
    • /
    • 2007
  • Finite element alternating method has been suggested and used effectively to obtain the fracture parameters in assessing the integrity of cracked structures. The method obtains the solution from alternating independently between the FEM solution for an uncracked body and the crack solution in an infinite body. In the paper, the finite element alternating method is extended in order to obtain the elastic-plastic stress fields of a three dimensional inner crack. The three dimensional crack solutions for an infinite body were obtained using symmetric Galerkin boundary element method. As an example of a three dimensional inner crack, a penny-shaped crack in a finite body was analyzed and the obtained elastc-plastic stress fields were compared with the solution obtained from the finite element analysis with fine mesh. It is noted that in the region ahead of the crack front the stress values from FEAM are close to the values from FEM. But large discrepancy between two values is observed near the crack surfaces.

Computation of 2-D mixed-mode stress intensity factors by Petrov-Galerkin natural element method

  • Cho, Jin-Rae
    • Structural Engineering and Mechanics
    • /
    • v.56 no.4
    • /
    • pp.589-603
    • /
    • 2015
  • The mixed-mode stress intensity factors of 2-D angled cracks are evaluated by Petrov-Galerkin natural element (PG-NE) method in which Voronoi polygon-based Laplace interpolation functions and CS-FE basis functions are used for the trial and test functions respectively. The interaction integral is implemented in a frame of PG-NE method in which the weighting function defined over a crack-tip integral domain is interpolated by Laplace interpolation functions. Two Cartesian coordinate systems are employed and the displacement, strains and stresses which are solved in the grid-oriented coordinate system are transformed to the other coordinate system aligned to the angled crack. The present method is validated through the numerical experiments with the angled edge and center cracks, and the numerical accuracy is examined with respect to the grid density, crack length and angle. Also, the stress intensity factors obtained by the present method are compared with other numerical methods and the exact solution. It is observed from the numerical results that the present method successfully and accurately evaluates the mixed-mode stress intensity factors of 2-D angled cracks for various crack lengths and crack angles.

Topology Optimization for Large-displacement Compliant Mechanisms Using Element Free Galerkin Method

  • Du, Yixian;Chen, Liping
    • International Journal of CAD/CAM
    • /
    • v.8 no.1
    • /
    • pp.1-10
    • /
    • 2009
  • This paper presents a topology optimization approach using element-free Galerkin method (EFGM) for the optimal design of compliant mechanisms with geometrically non-linearity. Meshless method has an advantage over the finite element method(FEM) because it is more capable of handling large deformation resulted from geometrical nonlinearity. Therefore, in this paper, EFGM is employed to discretize the governing equations and the bulk density field. The sensitivity analysis of the optimization problem is performed by incorporating the adjoint approach with the meshless method. The Lagrange multipliers method adjusted for imposition of both the concentrated and continuous essential boundary conditions in the EFGM is proposed in details. The optimization mathematical formulation is developed to convert the multi-criteria problem to an equivalent single-objective problem. The popularly applied interpolation scheme, solid isotropic material with penalization (SIMP), is used to indicate the dependence of material property upon on pseudo densities discretized to the integration points. A well studied numerical example has been applied to demonstrate the proposed approach works very well and the non-linear EFGM can obtain the better topologies than the linear EFGM to design large-displacement compliant mechanisms.

Numerical Simulation of Convection-dominated Flow Using SU/PG Scheme (SU/PG 기법을 이용한 이송이 지배적인 흐름 수치모의)

  • Song, Chang Geun;Seo, Il Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.3B
    • /
    • pp.175-183
    • /
    • 2012
  • In this study, Galerkin scheme and SU/PG scheme of Petrov-Galerkin family were applied to the shallow water equations and a finite element model for shallow water flow was developed. Numerical simulations were conducted in several flumes with convection-dominated flow condition. Flow simulation of channel with slender structure in the water course revealed that Galerkin and SU/PG schemes showed similar results under very low Fr number and Re number condition. However, when the Fr number increased up to 1.58, Galerkin scheme did not converge while SU/PG scheme produced stable solutions after 5 iterations by Newton-Raphson method. For the transcritical flow simulation in diverging channel, the present model predicted the hydraulic jump accurately in terms of the jump location, the depth slope, and the flow depth after jump, and the numerical results showed good agreements with the hydraulic experiments carried out by Khalifa(1980). In the oblique hydraulic jump simulation, in which convection-dominated supercritical flow (Fr=2.74) evolves, Galerkin scheme blew up just after the first iteration of the initial time step. However, SU/PG scheme captured the boundary of oblique hydraulic jump accurately without numerical oscillation. The maximum errors quantified with exact solutions were less than 0.2% in water depth and velocity calculations, and thereby SU/PG scheme predicted the oblique hydraulic jump phenomena more accurately compared with the previous studies (Levin et al., 2006; Ricchiuto et al., 2007).

Vibration and Stability Characteristics of Cylindrical Panels by the Galerkin Method (Galerkin 해석법에 의한 원통 Panel의 진동 및 좌굴특성)

  • Park, Moon Ho;Park, Sung Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.4
    • /
    • pp.27-35
    • /
    • 1991
  • This paper presents a numerical analysis procedure and a characteristics for vibration and buckling of the cylinderical panels. The panels with simply-simply or simply-clamped edge supports are subjectes to circumferential compressive or flexural stresses. The differential equations governing vibration and buckling for these panels are derived by using the fundamental differential equation of the Love-Timoshenko and are solved numerically via the Galerkin method. The panel with simply-clamped edge supports is used a trigonometric function or a eigen function of a beam as a trial function and the effects of trial functions on numerical solutions are displayed. Numerical results are presented to demonstrate the effects of the flexural parameters in natural frequencies and coefficients of critical buckling and some typical mode shapes of vibration and buckling are also presented.

  • PDF

Reassessment of the Mild Slope Equations (완경사 파랑식들의 재평가)

  • Seo, Seung-Nam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.6
    • /
    • pp.521-532
    • /
    • 2007
  • In the derivation of mild slope equation, a Galerkin method is used to rigorously form the Sturm-Liouville problem of depth dependent functions. By use of the canonical transformation to the dependent variable of the equation a reduced Helmholtz equation is obtained which exclusively consists of terms proportional to wave number, bottom slope and bottom curvature. Through numerical studies the behavior of terms is shown to play an important role in wave transformations over variable depth and it is proved that their relative magnitudes limit applicability of the mild slope equation(MSE) against the modified mild slope equation(MMSE).