• 제목/요약/키워드: Galaxy Groups

검색결과 84건 처리시간 0.02초

PROBING GALAXY FORMATION MODELS IN COSMOLOGICAL SIMULATIONS WITH OBSERVATIONS OF GALAXY GROUPS

  • HABIB. G., KHOSROSHAHI;GOZALIASL, GHASSEM;FINOGUENOV, ALEXIS;RAOUF, MOJTABA;MIRAGHEE, HALIME
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.349-353
    • /
    • 2015
  • We use multi-wavelength observations of galaxy groups to probe the formation models for galaxy formation in cosmological simulations, statistically. The observations include Chandra and XMM-Newton X-ray observations, optical photometry and radio observations at 1.4 GHz and 610 MHz. Using a large sample of galaxy groups observed by the XMM-Newton X-ray telescope as part of the XMM-Large Scale Survey, we carried out a statistical study of the redshift evolution of the luminosity gap for a well defined mass-selected group sample and show the relative success of some of the semi-analytic models in reproducing the observed properties of galaxy groups up to redshift z ~ 1.2. The observed trend argues in favour of a stronger evolution of the feedback from active galactic nuclei at z < 1 compared to the models. The slope of the relation between the magnitude of the brightest cluster galaxy and the value of the luminosity gap does not evolve with redshift and is well reproduced by the models. We find that the radio power of giant elliptic galaxies residing in galaxy groups with a large luminosity gap are lower compared to giant ellipticals of the same stellar masses but in typical galaxy groups.

KMTNet Test Observation of Nearby Southern Galaxy Groups

  • Lee, JaeHyung;Lim, Sungsoon;Sohn, Jubee;Jang, In Sung;Ryu, Jinhyuk;Ko, Youkyung;Lee, Myung Gyoon
    • 천문학회보
    • /
    • 제40권1호
    • /
    • pp.57.3-57.3
    • /
    • 2015
  • We present a test observation result of the KMTNet Intensive Nearby Southern Galaxy group Survey (KINGS). The KINGS is designed to study nearby galaxy groups (NGC 55, NGC 253, NGC 5128, and M83 groups), taking the advantage of the wide field coverage of the KMTNet. The main goal of the KINGS is to produce extensive catalogs of dwarf galaxies, ultra compact dwarfs (UCDs), and intraglobular clusters in the galaxy groups. We will also investigate the spatial distribution of intragroup light in each group. We present a progress report of the project based on the test BVI observations of two galaxy groups. We discuss the result from the test observation and possible improvement for future observations.

  • PDF

Galaxy Group Assembly Histories and the Missing Satellites Problem: A Case for the NGC 4437 Group

  • Kim, Yoo Jung;Lee, Myung Gyoon
    • 천문학회보
    • /
    • 제46권1호
    • /
    • pp.33.1-33.1
    • /
    • 2021
  • The overprediction of the number of satellite galaxies in the LCDM paradigm compared to that of the Milky Way (MW) and M31 (the "missing satellites" problem) has been a long-standing issue. Recently, a large host-to-host scatter of satellite populations has been recognized both from an observational perspective with a larger sample and from a theoretical perspective including baryons, and it is crucial to collect diverse and complete samples with a large survey coverage to investigate underlying factors contributing to the diversity. In this study, we discuss the diversity in terms of galaxy assembly history, using satellite populations of both observed systems and simulated systems from IllustrisTNG. In addition to previously studied satellite systems, we identify satellite candidates from 25deg2 of Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) Wide layer around NGC 4437, a spiral galaxy of about one-fourth of the MW mass, paired with a ~2 magnitude fainter dwarf spiral galaxy NGC 4592. Using the surface brightness fluctuations (SBF) method, we confirm five dwarf galaxies as members of the NGC 4437 group, resulting in a total of seven members. The group consists of two distinct subgroups, the NGC 4437 subgroup and the NGC 4592 subgroup, which resembles the relationship between the MW and M31. The number of satellites is larger than that of other observed and simulated galaxy groups in the same host stellar mass range. However, the discrepancy decreases if compared with galaxy groups with similar magnitude gaps (V12 ~ 2), defined as the V-band magnitude difference between the two brightest galaxies in the group. Using simulated galaxy groups in IllustrisTNG, we find that groups with smaller V12 have richer satellite systems, host more massive dark matter halos, and have assembled more recently. These results show that the host-to-host scatter of satellite populations can be attributed to the diversity in galaxy assembly history and be probed by V12 to some degree and that NGC 4437 group is likely a recently assembled galaxy group with a large halo mass compared to galaxy groups of similar luminosity.

  • PDF

A Mid-infrared View on the Fast Galaxy Evolution in Compact Groups

  • Lee, Gwang-Ho;Hwang, Ho Seong;Sohn, Jubee;Lee, Myung Gyoon
    • 천문학회보
    • /
    • 제41권2호
    • /
    • pp.34.2-34.2
    • /
    • 2016
  • We study the mid-infrared (MIR) properties of galaxies in compact groups and their environmental dependence using the Wide-field Infrared Survey Explorer data. We use a sample of 670 compact groups and their 2175 member galaxies with $M_r$ < -19 and 0.01 < z < 0.0741 from Sohn et al. (2016), which were identified through a friends-of-friends algorithm. We find that the MIR [3.4]-[12] colors of early-type galaxies in compact groups are on average bluer than those of early-type galaxies in clusters. Furthermore, we find that when compact groups have both early- and late-type member galaxies, the MIR colors of the late-type galaxies in those compact groups can be bluer than those of late-type galaxies in clusters. We also find that as background galaxy number densities of compact groups increase, compact group galaxies have higher early-type galaxy fractions and bluer MIR colors. These trends are also seen for background galaxies. However, at a given background density, compact group galaxies always have higher early-type galaxy fractions and bluer MIR colors than the background galaxies. Our findings suggest that the properties of compact group galaxies depend on both internal and external environments of the compact groups, and that galaxy evolution is faster in compact groups than in clusters.

  • PDF

AGE DATING GALAXY GROUPS IN THE MILLENNIUM SIMULATION

  • RAOUF, MOJTABA;KHOSROSHAHI, HABIB G.
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.363-365
    • /
    • 2015
  • We study galaxies drawn from the semi-analytic models of Guo et al. (2011) based on the Millennium Simulation. We establish a set of four observationally measurable parameters which can be used in combination to identify a subset of galaxy groups which are old, with a very high probability. We therefore argue that a sample of fossil groups selected based on the luminosity gap will result in a contaminated sample of old galaxy groups. By adding constraints on the luminosity of the brightest galaxy, and its offset from the group luminosity centroid, we can considerably improve the age-dating.

[발표취소] The Relationship Between Bright Galaxies and Their Faint Companions in Galaxy Clusters

  • Lee, Hye-Ran;Lee, Joon Hyeop;Kim, Minjin;Oh, Seulhee;Ree, Chang Hee;Jeong, Hyunjin;Kyeong, Jaemann;Kim, Sang Chul;Lee, Jong Chul;Ko, Jongwan;Park, Byeong-Gon;Sheen, Yun-Kyeong
    • 천문학회보
    • /
    • 제39권1호
    • /
    • pp.35.2-35.2
    • /
    • 2014
  • Today, it is widely accepted that dense environments tend to accelerate galaxy evolution. However, according to recent studies, the environments where galaxies evolve most considerably are galaxy groups rather than galaxy clusters. In an isolated group, the central host galaxy and its satellites co-evolve and interact with each other; as a result, they tend to have similar properties. Such conformity between host and satellite galaxies are relatively well known in galaxy groups, but it is hardly studied what happens after such galaxy groups merge into a galaxy cluster. Recently, J. H. Lee et al. (2014) have found that the colors of bright galaxies in WHL J085910.0+294957, a galaxy cluster at z = 0.3, show a measurable correlation with the mean colors of faint companions around them, which may be the vestige of infallen groups in the cluster. As a follow-up study, we explore more galaxy clusters, Abell 3659 and Abell 1146 at z ~ 0.1, using deep images obtained from the Magellan (Baade) 6.5-m telescope. Cluster members are selected based on the distributions of color, size and concentration along magnitude and spatial distribution. We investigate the dependence of the mean colors of faint companion galaxies on local environments and the properties of adjacent bright galaxies. After comparing the results with those in J. H. Lee et al. (2014), we discuss the origin of the relationships between bright galaxies and their faint companions based on their dependence on cluster properties.

  • PDF

A Cluster, Group, and Subgroup Catalog Using SDSS DR12

  • Lee, Youngdae;Jeong, Hyunjin;Ko, Jongwan;Lee, Joon Hyeop;Lee, Jong Chul;Lee, Hye-Ran;Yang, Yujin;Rey, Soo-Chang
    • 천문학회보
    • /
    • 제40권2호
    • /
    • pp.48.2-48.2
    • /
    • 2015
  • Galaxy Clusters with complex inner structures are excellent laboratories with which to study the properties of galaxies and the groups of galaxies in them. To execute a systematic search for flux-limited galaxy groups and clusters based on the spectroscopic galaxies with r < 17.77 of SDSS data release 12, we adopt a modified version of the friends-of-friends algorithm, whereupon a total of 3272 galaxy groups and clusters with at least 10 members are found. In this study, we aim to assign galaxy subgroups within groups and clusters that enable us to investigate the detained star-formation history of galaxies by applying a modified hierarchical grouping method to our galaxy group and cluster catalog. We note that roughly 70% of our galaxy groups and clusters have subgroups. The most remarkable additional results are as follows. The brightest cluster galaxies (BCGs) have brighter luminosities with larger velocity dispersions of groups and clusters. The BCGs are concentrated toward the most massive subgroups than the second and third one. This result implies that the galaxy properties can be affected by different merger and star-formation histories for differing environments.

  • PDF

Velocity Dispersion Bias of Galaxy Groups classified by Machine Learning Algorithm

  • Lee, Youngdae;Jeong, Hyunjin;Ko, Jongwan;Lee, Joon Hyeop;Lee, Jong Chul;Lee, Hye-Ran;Yang, Yujin;Rey, Soo-Chang
    • 천문학회보
    • /
    • 제44권2호
    • /
    • pp.74.2-74.2
    • /
    • 2019
  • We present a possible bias in the estimation of velocity dispersions for galaxy groups due to the contribution of subgroups which are infalling into the groups. We execute a systematic search for flux-limited galaxy groups and subgroups based on the spectroscopic galaxies with r < 17.77 mag of SDSS data release 12, by using DBSCAN (Density-Based Spatial Clustering of Application with Noise) and Hierarchical Clustering Method which are well known unsupervised machine learning algorithm. A total of 2042 groups with at least 10 members are found and ~20% of groups have subgroups. We found that the estimation of velocity dispersions of groups using total galaxies including those in subgroups are underestimated by ~10% compared to the case of using only galaxies in main groups. This result suggests that the subgroups should be properly considered for mass measurement of galaxy groups based on the velocity dispersion.

  • PDF

Do Compact Group Galaxies favor AGN?

  • 손주비;이명균;황호성;이종철;이광호
    • 천문학회보
    • /
    • 제37권1호
    • /
    • pp.48.2-48.2
    • /
    • 2012
  • We present preliminary results of a statistical study on the nuclear activity of compact group galaxies. What triggers Active Galactic Nuclei (AGN) is still a puzzling problem. One of the suggested AGN triggering mechanisms is galaxy-galaxy interaction. Many simulations have shown that gas can be supplied to the center of galaxies during galaxy encounters. In this regard, compact groups of galaxies are an ideal laboratory for studying the connection between galaxy interaction and nuclear activity because of their high densities and low velocity dispersions. We study the environmental dependence of the activity in galactic nuclei using 59 compact groups in the SDSS DR6. Using the emission line data, we classify galaxies in the compact groups. We find that 19% of the compact group galaxies are pure star-forming nuclei, 10% as transition objects, and only 7% of the galaxies in compact groups show the nuclear activity. The AGN fraction of compact group is higher than galaxy clusters, but lower than field environment. Implications of this result will be discussed.

  • PDF

ALMA/ACA CO (1-0) observations of group galaxies

  • Lee, Bumhyun;Wang, Jing;Chung, Aeree;Ho, Luis C.;Wang, Ran;Shao, Li;Michiyama, Tomonari;Wang, Shun;Peng, Eric W.;Kilborn, Virginia
    • 천문학회보
    • /
    • 제45권1호
    • /
    • pp.64.1-64.1
    • /
    • 2020
  • Galaxy groups are the place where many galaxies feel the impact of the surroundings (e.g., merging, tidal interaction, ram pressure stripping) before joining bigger structures like (sub)clusters. A significant fraction of galaxies is quenched in the group environment. Such "pre-processing" of galaxies in groups is likely to affect galaxy evolution tremendously. To better understand how environmental processes in galaxy groups affect molecular gas, star formation activity, and galaxy evolution, we carried out CO imaging observations of group galaxies, using the Atacama Compact Array (ALMA/ACA). We selected all the targets that have been detected in the GEMS-HI survey for two groups, making the sample of 40 galaxies (18 galaxies in IC 1459 group and 22 galaxies in NGC 4636 group). Our ALMA/ACA observation is the first CO imaging survey for two groups. In this work, we present CO images of group galaxies, together with their star formation maps and HI images. Our ACA CO data show the asymmetric distribution of molecular gas in some of our samples. We discuss the impact of the group environment on molecular gas and star formation activity.

  • PDF