• Title/Summary/Keyword: Galaxy: center

Search Result 335, Processing Time 0.023 seconds

On the Origin of the Correlation between Hubble Residual and Mass of the Type Ia Supernova Host Galaxies

  • Kang, Yijung;Kim, Young-Lo;Lim, Dongwook;Chung, Chul;Lee, Young-Wook
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.36.1-36.1
    • /
    • 2014
  • The correlation between mass of Type Ia Supernova (SN Ia) host galaxies and Hubble residual is now well-established. The origin of this relation, however, is yet to be understood. We have used low-resolution spectra of early-type hosts from YONSEI (YOnsei Nearby Supernovae Evolution Investigation) project to measure central velocity dispersion and Lick/IDS absorption indices. By using the Evolutionary Population Synthesis (EPS) models, luminosity-weighted mean age and metallicity of host galaxies were determined from $H{\beta}$ and absorption lines. Here we will discuss the correlation between the velocity dispersion, which indicates the mass of galaxies, and mean age of stellar population in our sample of early-type host galaxies.

  • PDF

WITNESSING DISSOLUTION OF A STAR CLUSTER IN THE SEXTANS DWARF GALAXY

  • Kim, Hak-Sub;Han, Sang-Il;Joo, Seok-Joo;Yoon, Suk-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.32.3-32.3
    • /
    • 2018
  • We report a possible discovery of a relic of a dissolved star cluster in the Sextans dwarf spheroidal galaxy. Using the hk index (${\equiv}$(Ca-b)-(b-y)) as a photometric metallicity indicator, we have successfully discriminated the metal-poor and metal-rich stars in the galaxy and found an unexpected number density peak of metal-poor stars near the galaxy center. The analysis of color-magnitude diagrams reveals that they appear to be originated from an old, metal-poor globular cluster which might be slightly farther than the bulk of field stars in the galaxy. This supports the presence of the star cluster remnants in the galaxy which have been suggested by previous studies. If confirmed, dissolution of a star cluster provides a piece of evidence of a cored dark-matter halo profile for the Sextans dwarf galaxy.

  • PDF

Spectroscopic Confirmation of Galaxy Clusters at z~0.92

  • Kim, Jae-Woo;Im, Myungshin;Lee, Seong-Kook;Hyun, Minhee
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.45.1-45.1
    • /
    • 2015
  • Galaxy clusters have provided important information to understand the evolution of the universe, since the number density and mass of clusters are tightly related to the cosmological parameters. In addition, galaxy clusters are an excellent laboratory to investigate the galaxy evolution in dense environments. However, finding galaxy clusters at high redshift ($z{\geq}1$) still remains as a main subject in astronomy due to their rareness and difficulty in identifying such objects from optical imaging data alone. Here, we report a spectroscopic follow-up observation of distant galaxy cluster candidates identified by a deep optical-NIR dataset of Infrared Medium-deep Survey. Through the galaxy spectra taken with the IMACS instrument on the Magellan telescope, we confirm at least 3 massive clusters at z~0.92. Interestingly, the maximum spatial separation between these clusters is ~8Mpc, which implies that this system is a new supercluster in the distant universe. We also discuss properties of galaxies in these clusters based on multi-wavelength photometric data.

  • PDF

IAn Automatic Measurement Method for the Galaxy Disk Warp and its Application to SDSS Stripe 82 Galaxies

  • Moon, Jun-Sung;Kim, Jeonghwan H.;Jee, Woongbae;Yoon, Suk-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.63.1-63.1
    • /
    • 2014
  • The galaxy disk warp is a common phenomenon, yet their properties and formation mechanism(s) are still unclear. Here, we introduce a new automatic measurement method for the warp properties of stellar disks in nearby edge-on galaxies, including warp's angle, shape, and asymmetry. We obtain isophotal maps of edge-on galaxies and express each of isophote contours in polar coordinates (${\Phi}$, R) centered on the galaxy centers. Two peaks in the ${\Phi}$-R diagram correspond to the outermost tips of each isophote. The locations of peaks, in turn, inform us of the misalignment between their inner and outer galactic planes, i.e., the warp. We apply this method to SDSS Stripe 82 co-added data and discuss its reliability and validity. Based on the measurement of warp properties, we also investigate their correlations with both intrinsic and environmental properties of warped galaxies.

  • PDF

Statistical Analysis of Fly-by interactions between Galaxies via Cosmological Simulations

  • An, Sung-Ho;Kim, Jeonghwan;Yun, Kiyun;Kim, Juhan;Yoon, Suk-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.51.2-51.2
    • /
    • 2013
  • Galactic fly-by interactions are believed to be far more frequent than direct mergers, acting as hidden drivers of galaxy evolution. We perform a tree-particle-mesh code GOTPM, and investigate the statistical properties of the fly-by interactions as functions of halo masses and ambient environments. Based on the total energy of the two halos of interest, impulsive fly-by pairs are identified from eventual merger candidates. We find three obvious results as follows: (1) Halos in the high-dense environment experience more frequent mergers and fly-by encounters than those in the low-dense region; (2) In the massive halos, both merger and fly-by fractions evolve more dramatically with time than those in dwarfs; and (3) The fly-by fraction decreases as approaching the present epoch, in contrast to the increase of the merger fraction.

  • PDF

Unveiling the Lens Galaxy of FLS 1718+59: A Galaxy-Galaxy Gravitational Lens System

  • Taak, Yoon Chan;Im, Myungshin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.70.1-70.1
    • /
    • 2014
  • We analyze a newly discovered galaxy-galaxy scale gravitational lens system, FLS 1718+59 in the Spitzer First Look Survey (FLS) field. A background galaxy (z = 0.245) is severely distorted by a foreground galaxy (z = 0.08), via gravitational lensing. We analyze this system by several methods, including surface brightness fitting (Galfit and Ellipse), gravitational lens modeling (gravlens), and spectral energy distribution fitting (Magphys). From Galfit and Ellipse we measure properties of the lens galaxy, such as the effective radius and the average surface brightness inside it, the ellipticity, and the position angle. gravlens gives us the total mass inside the Einstein radius ($R_{Ein}$), and Magphys provides us an estimate of the stellar mass inside $R_{Ein}$. By comparing these obtained parameters, we confirm that the lens galaxy is an elliptical galaxy on the Fundamental Plane, and calculate the stellar mass function inside $R_{Ein}$, and discuss the implications of the results regarding the initial mass function.

  • PDF

The Luminosity of Type Ia Supernova as a Function of Host-Galaxy Morphology

  • Kim, Young-Lo;Kang, Yijung;Lim, Dongwook;Lee, Young-Wook
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.76.1-76.1
    • /
    • 2012
  • We have employed SNANA supernova analysis package to make YONSEI Supernova Catalogue 1, which contains distance modulus, light-curve shape parameters, and color or extinction values of each supernova. This database is used to study the dependence of Type Ia supernovae (SNe Ia) luminosities on the host-galaxy morphologies. The redshift range of this catalogue is 0.010 < z < 1.555, and we use three light-curve fitters: SALT2, MLCS2k2 (Rv = 3.1), and MLCS2k2 (Rv = 1.7). We find a systematic difference in the Hubble residual (HR) of $0.1{\pm}0.031$ mag between E-S0 and Scd/Sd/Irr host-galaxies, and of $0.16{\pm}0.044$ mag between passive and star-burst host-galaxies. This difference is significant over the $3{\sigma}$ level. Considering the significant difference in the mean age of stellar population between these morphological types, the difference in the HR reported here suggests that the evolution effect of SNe Ia luminosity should be considered in the cosmological application of SNe Ia data.

  • PDF

Evolution of late-type galaxies in cluster environment: Effects of high-speed multiple interactions with early-type galaxies

  • Hwang, Jeong-Sun;Park, Changbom;Banerjee, Arunima;Hwang, Ho Seong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.46.1-46.1
    • /
    • 2017
  • Late-type galaxies falling into a cluster would evolve being influenced by the interactions with both the cluster and the nearby cluster member galaxies. Most numerical studies, however, tend to focus on the effects of the former with little work done on those of the later. We thus perform numerical study on the evolution of a late-type galaxy falling radially toward the cluster center interacting with neighbouring early-type galaxies, using N-body, hydrodynamical simulations. Based on the information about the typical galaxy encounters obtained by using the galaxy catalog of Coma cluster, we run the simulations for the cases where a Milky Way Galaxy-like late-type galaxy, flying either edge-on or face-on, experiences six consecutive collisions with twice more massive early-type galaxies having hot gas in their halos. Our simulations show that the evolution of the late-type galaxy can be significantly affected by the high-speed multiple collisions with the early-type galaxies, such as on the cold gas content and the star formation activity, particularly through the hydrodynamic interactions between the cold disk and the hot gas halos. By comparing our simulation results with those of others, we claim that the role of the galaxy-galaxy interactions on the evolution of late-type galaxies in clusters could be comparable with that of the galaxy-cluster interactions, depending on the dynamical history.

  • PDF

Newly discovered galaxy overdensities and large scale structures at z~1

  • Hyun, Minhee;Im, Myungshin;Kim, Jae-Woo;Lee, Seong-Kook
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.39.2-39.2
    • /
    • 2019
  • Galaxy clusters are the largest gravitationally bound structures in the universe and located in the densest peak of the dark matter. They can constraint cosmologicals model from their dark matter halo distribution and they are good laboratories to study how galaxy evolution varies with their environment. Especially, studies of galaxy clusters at $z{\geq}1$ are important because (i) galaxy evolution at z >1 is still controversial (Elbaz et al. 2007; Faloon et al. 2013) and (ii) some studies show that mass of galaxy clusters at z>1 seems to be higher than expected value from the concordance LCDM cosmological model (Kang & Im 2009; Gonzales et al. 2012). In spite of their significance, there have not been many studies of galaxy clusters at $z{\geq}1$ because of the lack of wide and deep multi-wavelength data. We newly found galaxy cluster candidates at 0.2 < z < 1.4 and a LSS spanning over 100Mpc at z~0.9 in the ELAIS-N1 field which is one of the IMS (Infrared Medium-deep Survey; Im et al. 2019, in preparation) fields. Thanks to K-GMT science program, we performed spectroscopic follow-up observation for a z~1 galaxy cluster candidates with GMOS of Gemini North and for z~0.9 supercluster candidates with Hectospec of MMT in 2018A and confirmed the large scale structures. We present the newly discovered galaxy overdensities from the observation and the analysis result.

  • PDF

Identifying Cluster Candidates in CFHTLS W2 Field

  • Paek, Insu;Im, Myungshin;Kim, Jae-Woo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.59.2-59.2
    • /
    • 2018
  • Recent studies of galaxy clusters have shown that the galaxy clusters in dense environment tend to have lower star formation rate in local universe with z < 1. However, this correlation is not significant in galaxy clusters with z > 1. The study of galaxy clusters around z=1 can yield insight into cosmological galaxy evolution. Nevertheless, the identification of galaxy clusters beyond the scope of immediate local universe requires wide field data in optical and near-infrared bands. By incorporating data from Canada-France-Hawaii Telescope Legacy Survey(CFHTLS) and Infrared Medium-Deep Survey(IMS), the photometric redshifts of galaxies in CFHTLS W2 field were calculated. Using spatial distribution and photometric redshifts, the galaxies in the field were divided into redshift bins. The image of each redshift bin was analyzed by measuring the number density within proper distance of 1Mpc. By comparing high density regions in consecutive redshift bins, we identified the cluster candidates and mapped the large-scale structure within the CFHTLS W2 field.

  • PDF