• Title/Summary/Keyword: Galaxies: spiral galaxies

Search Result 147, Processing Time 0.022 seconds

SPIRAL ARM MORPHOLOGY OF NEARBY GALAXIES

  • Ann, Hong Bae;Lee, Hyun-Rok
    • Journal of The Korean Astronomical Society
    • /
    • v.46 no.3
    • /
    • pp.141-149
    • /
    • 2013
  • We analyze the spiral structure of 1725 nearby spiral galaxies with redshift less than 0.02. We use the color images provided by the Sloan Digital Sky Survey. We determine the arm classes (grand design, multiple-arm, flocculent) and the broad Hubble types (early, intermediate, late) as well as the bar types (SA, SAB, SB) by visual inspection. We find that flocculent galaxies are mostly of late Hubble type while multiple-arm galaxies are likely to be of early Hubble type. The fractional distribution of grand design galaxies is nearly constant along the Hubble type. The dependence of arm class on bar type is not as strong as that of the Hubble type. However, there is about a three times larger fraction of grand design spirals in SB galaxies than in SA galaxies, with nearly constant fractions of multiple-arm galaxies. However, if we consider the Hubble type and bar type together, grand design spirals are more frequent in early types than in late types for SA and SAB galaxies, while they are almost constant along the Hubble type for SB galaxies. There are clear correlations between spiral structures and the local background density: strongly barred, early-type, grand design spirals favor high-density regions, while non-barred, late-type, flocculent galaxies are likely to be found in low-density regions.

FORMATION OF INTERMEDIATE-SCALE STRUCTURES IN SPIRAL GALAXIES

  • KIM WOONG-TAE
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.4
    • /
    • pp.243-248
    • /
    • 2004
  • Disk galaxies abound with intermediate-scale structures such as OB star complexes, giant clouds, and dust spurs in a close geometrical association with spiral arms. Various mechanisms have been proposed as candidates for their origin, but a comprehensive theory should encompass fundamental physical agents such as self-gravity, magnetic fields, galactic differential rotation, and spiral arms, all of which are known to exist in disk galaxies. Recent numerical simulations incorporating all these physical processes show that magneto-Jeans instability (MJI), in which magnetic tension resists the stabilizing Coriolis force of galaxy rotation, is much more powerful than swing-amplification or the Parker instability in forming self-gravitating intermediate-scale structures. The MJI occurring in shearing and expanding flows off spiral arms rapidly forms structures elongated along the direction perpendicular to the arms, remarkably similar to dust spurs seen in HST images of spiral galaxies. In highly nonlinear stages, these spurs fragment to form bound clumps, possibly evolving into bright arm and interarm H II regions, suggesting that all these intermediate-scale structures in spiral galaxies probably share a common dynamical origin.

RESONANCE EXCITATION AND THE SPIRAL-RING STRUCTURE OF DISK GALAXIES

  • YUAN CHI
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.45-48
    • /
    • 1996
  • Rings are common in disk galaxies. These rings are either indistinguishable from a pair of tightly wound spirals, or themselves are a part of the spiral structure. Furthermore, their occurrence is seen coincident with a bar in the center. In this paper, we interpret this spiral-ring structure as density waves resonantly excited by a rotating bar potential. The theory gives excellent agreement for the molecular spiral-rings in central parts. of nearby disk galaxies, observed by high resolution radio arrays. The same mechanism works for more distant spiral-rings in the outer parts of disk galaxies qualitatively, although the problem is complicated by the coupling of the stellar and gaseous disks.

  • PDF

STUDYING THE MORPHOLOGY AND STAR FORMATION OF GALAXIES AS A PROBE OF GALAXY EVOLUTION

  • CHEN, HSUAN-JU;HWANG, CHORNG-YUAN
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.511-512
    • /
    • 2015
  • Star formation activities dominate the evolution of galaxies. Elliptical galaxies are believed to be old galaxies in the Hubble sequence, and elliptical galaxies at different evolution epochs might have different star formation activities and/or morphologies. We investigate the connection between star formation rates and the morphology of elliptical galaxies. With the Sloan Digital Sky Survey (SDSS) and the Galaxy Zoo, we select a sample of elliptical galaxies by morphology and consider their infrared emission as an index of star formation rate to study the relation between the star formation rates and their morphological properties, such as ellipticities. In addition, we select some nearby spiral galaxies with very low MIR emission to probe the mechanisms of these red spiral galaxies. We display our preliminary results and discuss their implication on the evolution of galaxies in this poster.

ENVIRONMENTAL DEPENDENCE OF WARPS IN SPIRAL GALAXIES

  • Ann, Hong Bae;Bae, Hyun Jeong
    • Journal of The Korean Astronomical Society
    • /
    • v.49 no.6
    • /
    • pp.239-253
    • /
    • 2016
  • We determined the warp parameters of 192 warped galaxies which are selected from 340 edge-on galaxies using color images as well as r-band isophotal maps. We derive the local background density (${\Sigma}_n$) to examine the dependence of the warp amplitudes on the galaxy environment. We find a clear trend that strongly warped galaxies are likely to be found in high density regions where tidal interactions are supposed to be frequent. However, the correlation between ${\alpha}_{\omega}$ and ${\Sigma}_n$ is too weak for weakly warped galaxies (${\alpha}_{\omega}$ < $4^{\circ}$) and the cumulative distributions of weakly warped galaxies are not significantly different from those of galaxies with no detectable warps. This suggests that tidal interactions do not play a decisive role in the formation of weak warps.

CCD PHOTOMETRY OF THE GALAXIES ESO598-G009, NGC1515 AND NGC7456

  • CHO YOUNG JUN;PARK BYEONG-GON;YOON TAE SEOG
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.79-80
    • /
    • 1996
  • We performed CCD surface photometry in B,V,R and I filters for three southern spiral galaxies:ESO598-G009,NGC1515 and NGC7456. Isophotal map, luminosity profile, ellipticity profile and position angle profile were obtained for these galaxies using SPIRAL package. The results show that one of the galaxies, ESO598-G009 has relatively large bulge component and changes in position angle due to spiral arms. The NGC7456 has very small bulges; and the isophotal map of the NGC1515 shows that it is a typical spiral galaxy with bar.

  • PDF

SPIRAL ARM MORPHOLOGY IN CLUSTER ENVIRONMENT

  • Choi, Isaac Yeoun-Gyu;Ann, Hong-Bae
    • Journal of The Korean Astronomical Society
    • /
    • v.44 no.5
    • /
    • pp.161-175
    • /
    • 2011
  • We examine the dependence of the morphology of spiral galaxies on the environment using the KIAS Value Added Galaxy Catalog (VAGC) which is derived from the Sloan Digital Sky Survey (SDSS) DR7. Our goal is to understand whether the local environment or global conditions dominate in determining the morphology of spiral galaxies. For the analysis, we conduct a morphological classification of galaxies in 20 X-ray selected Abell clusters up to z~0.06, using SDSS color images and the X-ray data from the Northern ROSAT All-Sky (NORAS) catalog. We analyze the distribution of arm classes along the clustercentric radius as well as that of Hubble types. To segregate the effect of local environment from the global environment, we compare the morphological distribution of galaxies in two X-lay luminosity groups, the low-$L_x$ clusters ($L_x$ < $0.15{\times}10^{44}$erg/s) and high-$L_x$ clusters ($L_x$ > $1.8{\times}10^{44}$erg/s). We find that the morphology-clustercentric relation prevails in the cluster environment although there is a brake near the cluster virial radius. The grand design arms comprise about 40% of the cluster spiral galaxies with a weak morphology-clustercentric radius relation for the arm classes, in the sense that flocculent galaxies tend to increase outward, regardless of the X-ray luminosity. From the cumulative radial distribution of cluster galaxies, we found that the low-$L_x$ clusters are fully virialized while the high-$L_x$ clusters are not.

CCD SURFACE PHOTOMETRY OF SPIRAL GALAXIES: BULGE MORPHOLOGY

  • Ann, Hong-Bae
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.4
    • /
    • pp.261-270
    • /
    • 2003
  • We have conducted a V-band CCD surface photometry of 68 disk galaxies to analyze the bulge morphology of nearby spirals. We classify bulges into four types according to their ellipticities and the misalignments between the major axis of the bulge and those of the disk and the bar: spherical, oblate, pseudo triaxial, and triaxial. We found that one third of the bulges are triaxial and they are preponderant in barred galaxies. The presence of the triaxial bulges in a significant fraction of unbarred galaxies as well as in barred galaxies might support the secular evolution hypothesis which postulates that the bar driven mass inflow leads to the formation of triaxial bulges and the destruction of bars when sufficient mass is accumulated in the central regions.

SED DECOMPOSITION OF INFRARED-LUMINOUS GALAXIES

  • Lee, Jong Chul
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.291-292
    • /
    • 2012
  • We select infrared-luminous galaxies by cross-matching the SDSS spectroscopic sample of galaxies with the WISE all-sky survey catalog. Based on photometric data points covering from SDSS u-band to WISE $22{\mu}m$, their spectral energy distributions (SEDs) are separated into AGN, elliptical, spiral, and irregular galaxy components. The derived luminosities of spiral galaxy and AGN are well correlated with $H{\alpha}$ and [OIII] line luminosities, respectively. Most galaxies are dominated by young stellar populations even for optical AGNs, but at least 10% of optical non-AGNs appear to harbor buried AGNs. The AGN contribution increases dramatically with the total luminosity. These results show that the SED decomposition is successful and is useful to understand the true nature of dusty galaxies.

Non-axisymmetric Features of Dwarf Elliptical Galaxies

  • Kwak, Sungwon;Kim, Woong-Tae;Rey, Soo-Chang;Kim, Suk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.39.3-39.3
    • /
    • 2016
  • About one tenth of dwarf elliptical galaxies found in the Virgo cluster have a disk component, and some of them even possess substructures such as bars, lens, and spiral arms. We use N-body simulations to study the formation of these non-axisymmetric features in disky dwarf elliptical galaxies. By mimicking VCC 856, a bulgeless dwarf galaxy with embedded faint spiral arms, we construct 11 sets of initial conditions with slight dynamical variations based on observational data. Our standard model starts slowly to form a bar at ~3 Gyr and then undergoes buckling instability that temporarily weakens the bar although the bar strength continues to grow afterward. We find 9 of our models are unstable to bar formation and undergo buckling instability. This suggests that disky dwarf elliptical galaxies are intrinsically unstable to form bars, accounting for a population of barred dwarf galaxies in the outskirts of the Virgo cluster. To understand the origin of the faint grand-design spiral arms, we additionally construct 6 sets of models that undergo tidal interactions with their neighbors. We find that faint spiral arms consistent with observations develop when tidal forcing is relatively weak although strong encounter still results in bar formation. We discuss our results in light of the dynamical evolution of dwarf elliptical galaxies including mergers.

  • PDF