• Title/Summary/Keyword: Galaxies%3A active

Search Result 61, Processing Time 0.036 seconds

The black hole mass-stellar velocity relation of the present-day active galaxies

  • Woo, Jong-Hak
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.79-79
    • /
    • 2010
  • To investigate whether the present-day active galaxies follow the same black hole mass vs. stellar velocity dispersion (MBH-$\sigma*$) relation as quiescent galaxies, we measured the velocity dispersions of a sample of local Seyfert 1 galaxies, for which black hole masses were measured via reverberation mapping. We measured stellar velocity dispersions from high S/N optical spectra centered on the Ca II triplet region (${\sim}8500^{\circ}A$), obtained at the Keck, Palomar, and Lick Observatories. For two objects, in which the Ca II triplet region was contaminated by nuclear emission, we used high-quality H-band spectra obtained with the OH-Suppressing Infrared Imaging Spectrograph and laser-guide star adaptive optics at the Keck-II Telescope. Combining our new measurements with data from the literature, we assemble a sample of 24 active galaxies with stellar velocity dispersions and reverberation MBH in the range of black hole mass 106< MBH /$M{\odot}$ < 109,toobtainthefirstreverberationmappingconstraintsontheslopeandintrinsicscatteroftheMBH- $\sigma*$ relation of active galaxies. Assuming a constant virial coefficient f for the reverberation MBH, we find a slope ${\beta}=3.55{\pm}0.60$ and the intrinsic scatter ${\sigma}int=0.43{\pm}0.08$ dex in the relation log (MBH/M${\odot}$)=$\alpha+\beta$ log(${\sigma}*$/200 km s-1), which are consistent with those found for quiescent galaxies. We derive an updated value of the virial coefficient f by finding the value which places the reverberation masses in best agreement with the MBH - $\sigma*$ relation of quiescent galaxies; using the quiescent MBH - $\sigma*$ relation determined by Gultekin et al. we find log f=0.72+0.09 (or $0.71{\pm}0.10$) with an intrinsic scatter of $0.44{\pm}0.07$ (or 0.46+0.07) dex. No correlations between f and parameters connected to the physics of accretion (such as the Eddington ratio or line-shape measurements) are found. The uncertainty of the virial coefficient remains one of the main sources of the uncertainty in black hole mass determination using reverberation mapping, and therefore also in single-epoch spectroscopic estimates of black hole masses in active galaxies.

  • PDF

MASSIVE BLACK HOLE EVOLUTION IN RADIO-LOUD ACTIVE GALACTIC NUCLEI

  • FLETCHER ANDRE B.
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.3
    • /
    • pp.177-187
    • /
    • 2003
  • Active galactic nuclei (AGNs) are distant, powerful sources of radiation over the entire electromagnetic spectrum, from radio waves to gamma-rays. There is much evidence that they are driven by gravitational accretion of stars, dust, and gas, onto central massive black holes (MBHs) imprisoning anywhere from $\~$1 to $\~$10,000 million solar masses; such objects may naturally form in the centers of galaxies during their normal dynamical evolution. A small fraction of AGNs, of the radio-loud type (RLAGNs), are somehow able to generate powerful synchrotron-emitting structures (cores, jets, lobes) with sizes ranging from pc to Mpc. A brief summary of AGN observations and theories is given, with an emphasis on RLAGNs. Preliminary results from the imaging of 10000 extragalactic radio sources observed in the MITVLA snapshot survey, and from a new analytic theory of the time-variable power output from Kerr black hole magnetospheres, are presented. To better understand the complex physical processes within the central engines of AGNs, it is important to confront the observations with theories, from the viewpoint of analyzing the time-variable behaviours of AGNs - which have been recorded over both 'short' human ($10^0-10^9\;s$) and 'long' cosmic ($10^{13} - 10^{17}\;s$) timescales. Some key ingredients of a basic mathematical formalism are outlined, which may help in building detailed Monte-Carlo models of evolving AGN populations; such numerical calculations should be potentially important tools for useful interpretation of the large amounts of statistical data now publicly available for both AGNs and RLAGNs.

A MULTI-WAVELENGTH STUDY OF PAH-SELECTED STARBURST GALAXIES

  • Takagi, T.;Matsuhara, H.;Wada, T.;Ohyama, Y.;Oyabu, S.
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.321-324
    • /
    • 2012
  • Using extensive mid-IR datasets from AKARI, i.e. 9-band photometry covering the wavelength range from $2{\mu}m$ to $24{\mu}m$ and the unbiased spectroscopic survey for sources with $S_{\nu}$($9{\mu}m$)>0.3 mJy, we study starburst galaxies specifically at the redshift of z ~ 0.5, whose mid-IR spectra are clearly dominated by the PAH emission features. PAH-selected galaxies, selected with extremely red mid-IR colour due to PAHs, have high rest-frame PAH-to-stellar luminosity ratios, comparable to those in the most active regions in nearby starburst galaxies. Thus, they seem to have active starburst regions spreading over the whole body. Furthermore, some of PAH-selected galaxies are found to have peculiar rest-frame 11-to-$8{\mu}m$ flux ratios, which is systematically smaller than nearby starburst/AGN spectral templates. This may indicate a systematic difference in the physical condition of ISM between nearby and distant starburst galaxies.

THE 3.3 MICRON PAH EMISSION OF THE MID-INFRARED EXCESS GALAXIES DISCOVERED BY THE AKARI MID-INFRARED ALL-SKY SURVEY

  • Yamada, R.;Oyabu, S.;Kaneda, H.;Yamagishi, M.;Ishihara, D.;Kim, J.H.;Im, M.;Toba, Y.;Matsuhara, H.
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.299-300
    • /
    • 2012
  • We investigate the relation between star formation activity and PAH $3.3{\mu}m$ emission. Our targets are mid-infrared-excess galaxies selected from the AKARI all-sky survey point source catalog. We performed AKARI near-infrared spectroscopy for them. As a result, we obtained $2.5-5{\mu}m$spectra of 79 galaxies, and selected 35 star-forming galaxies out of them. Comparing the PAH $3.3{\mu}m$ luminosities with the infrared luminosities, we find a linear correlation between them. However, by adding the results from literatures for luminous infrared galaxies and ultra-luminous infrared galaxies that are more luminous than our sample, the ratio of the PAH to the infrared luminosity is found to decrease towards the luminous end.

ACTIVE GALACTIC NUCLEUS INTERACTION WITH THE HOT GAS ENVIRONMENT: UNDERSTANDING FROM THE RADIO AND X-RAY DATA

  • LAL, DHARAM V.
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.423-427
    • /
    • 2015
  • Recognition of the role of radio galaxies in the universe has been increasing in recent years. Their colossal energy output over huge volumes is now widely believed to play a key role not only in the formation of galaxies and their supermassive black holes, but also in the evolution of clusters of galaxies and, possibly, the cosmic web itself. In this regard, we need to understand the inflation of radio bubbles in the hot gas atmospheres of clusters and the importance of the role that radio galaxies play in the overall energy budget of the intracluster medium. Here, we present results from X-ray and radio band observations of the hot gas atmospheres of powerful, nearby radio galaxies in poor clusters.

DETECTION OF Hα EMISSION FROM z>3.5 GALAXIES WITH AKARI-FUHYU NIR SPECTROSCOPY

  • Sedgwick, Chris;Serjeant, Stephen;Pearson, Chris;Takagi, Toshinobu;Matsuhara, Hideo;Wada, Takehiko;Lee, Hyung Mok;Im, Myungshin;Jeong, Woong-Seob;Oyabu, Shinki;White, Glenn J.
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.357-360
    • /
    • 2012
  • This paper presents $H{\alpha}$ emission line detections for four galaxies at z > 3.5 made with AKARI as part of the FUHYU mission program. These are the highest-redshift $H{\alpha}$ detections to date in star-forming galaxies. AKARI's unique near-infrared spectroscopic capability has made these detections possible. For two of these galaxies, this represents the first evidence of their redshifts and confirms their physical association with a companion radio galaxy. The star formation rates (SFRs) estimated from the $H{\alpha}$ lines under-predict the SFRs estimated from their far-infrared luminosities by a factor of ~ 2 - 3. We have also detected broad $H{\alpha}$ components in the two radio galaxies which indicate the presence of quasars.

THE GALAXY-BLACK HOLE CONNECTION IN THE LOCAL UNIVERSE

  • Schawinski, Kevin;Fellow, Einstein
    • Publications of The Korean Astronomical Society
    • /
    • v.25 no.3
    • /
    • pp.77-82
    • /
    • 2010
  • Recent results from large surveys of the local universe show that the galaxy-black hole connection is linked to host morphology at a fundamental level and that there are two fundamentally different modes of black hole growth. The fraction of early-type galaxies with actively growing black holes, and therefore the AGN duty cycle, declines significantly with increasing black hole mass. Late-type galaxies exhibit the opposite trend: the fraction of actively growing black holes increases with black hole mass. Issues of AGN selection bias and prospects for near-future efforts with high redshift data are discussed.

SURVEY OF DUSTY ACTIVE GALACTIC NUCLEI BASED ON THE MID-INFRARED ALL-SKY SURVEY CATALOG

  • Oyabu, S.;Ishihara, D.;Yamada, R.;Kaneda, H.;Yamagishi, M.;Toba, Y.;Matsuhara, H.;Nakagawa, T.;Malkan, M.;Shirahata, M.
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.265-270
    • /
    • 2012
  • Many observations have found evidence of the presence of a large number of heavily obscured Active Galactic Nuclei (AGNs). However, the nature of this population is only poorly understood because heavy obscuration by dust prevents one from finding them at optical wavelengths. Mid-infrared AGN searches can overcome this obstacle by penetrating through dust and by detecting direct emission from the dust torus. Thus, we can identify most of the AGN population, including type-2 and buried AGNs. Using the AKARI mid-infrared all-sky survey, we performed an AGN search in the nearby universe. Utilizing the 2MASS photometry, we selected mid-infrared-excess sources and carried out near-infrared spectroscopic observations in the AKARI Phase 3. During these follow-up observations, we have found three galaxies that show strong near-infrared red continuum from hot dust with a temperature of about 500 K, but do not show any AGN features in other wavelengths. The most suitable explanation of near-infrared continuum is the presence of central AGNs. Therefore, we conclude that they are AGNs obscured by dust. We performed X-ray observations of the two galaxies with SUZAKU. No detections in the 0.4-10 keV suggest that the column density may be much higher than $N_H=10^{23.5}cm^{-2}$. Comparing the masses of the host galaxies with those of the SDSS AGNs, we find that the host galaxies of the dusty AGNs discovered with AKARI are less massive populations than those of optically selected AGNs.

A Phase-space View of Environmentally Driven Processes in the Virgo Cluster

  • Yoon, Hyein;Chung, Aeree;Smith, Rory;Jaffe, Yara L.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.69.3-70
    • /
    • 2016
  • We study the orbital histories of Virgo galaxies undergoing different HI gas stripping stages using phase-space diagrams. Based on the HI properties of galaxies, we find that location of galaxies is in good agreement with ram-pressure stripping predicted by numerical simulations with different infall time. For example, galaxies experiencing active gas stripping are mostly found in the first infall region showing high velocity with respect to the cluster center. Meanwhile, most galaxies that are likely to have lost gas a while ago are found in the cluster outskirts with low orbital velocities. We also discuss the cases where observational properties of galaxies and their locations in the phase-space do not well agree. In addition, we probe the phase-space of filaments and subgroups around or within Virgo. Our results strongly suggest that substructures can play important roles in galaxy evolution while galaxies are falling to the cluster.

  • PDF

The development of field galaxies in the first half of the cosmic history

  • Park, Minjung;Yi, Sukyoung K.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.35.3-36
    • /
    • 2018
  • One of the most prevalent knowledge about disk galaxies, which dominate the population of the local Universe, is that they consist of stellar structures with different kinematics, such as thin disk, bulge, and halo. Therefore, investigating when and how these components develop in a galaxy is the key to understanding the evolution of galaxies. Using the NewHorizon simulation, we can resolve the detailed structures of galaxies, in the field environment, from the early Universe where star formation and mergers were most active. We first decompose stellar particles in a galaxy into a disk and a dispersion-dominated, spheroidal, component based on their orbits and then see how these components evolve in terms of mass and structure. At high redshift z~3, galaxies are mostly dispersion-dominated as stars are formed misaligned with the galactic rotational axis. At z=1~2, massive galaxies start to dominantly form disk stars, while less massive galaxies do much later. Furthermore, massive galaxies are forming thinner and larger disks with time, and the preexistent disks are heated or even disrupted to become a part of dispersion-dominated component. Thus, the mass growth of spheroidal components at later epochs is dominated by disrupted stars with disk origins and accreted stars at large radii.

  • PDF