• Title/Summary/Keyword: Galactosylglycerol

Search Result 2, Processing Time 0.017 seconds

Synthesis of galactosylglycerol from Melibiose as M-5 Intermediate (Melibiose로부터 M-5중간체 galactosylglycerol의 합성)

  • 차배천
    • YAKHAK HOEJI
    • /
    • v.45 no.6
    • /
    • pp.575-581
    • /
    • 2001
  • The galactolipid M-5, which showed anti-inflammatory activity is glycoglycerolipid isolated from the Okinawa marine sponge Phyllospongia foliascens. Glycolipids have been synthesized by various methods, especially it were generally known that synthetic method of M-5 analogue and synthetic method of various glycolipids by glycosidation after synthesis of glycerolipid part. The others, it was not suggested that synthetic method via glycosylglycerol obtained by degradation from diglycoside. This study was carried out to investigate the synthesis of galactosylglycerol from melibiose as M-5 intermediate. Synthesis of galactosylglycerol was accomplished by selective protection of hydroxy group of sugar and diol cleavage by Pb(OAc)$_4$. As a result, galactosylglycerol was synthesized by 8 steps pathway and their structures were elucidated by analysis instrument.

  • PDF

Marine Algae and Their Potential Application as Antimicrobial Agents

  • Charway, Grace N.A.;Yenumula, Padmini;Kim, Young-Mog
    • Journal of Food Hygiene and Safety
    • /
    • v.33 no.3
    • /
    • pp.151-156
    • /
    • 2018
  • The world is becoming overwhelmed with widespread diseases as antibiotic resistance increases at an alarming rate. Hence, there is a demanding need for the discovery and development of new antimicrobial drugs. The ocean is gifted with many organisms like phytoplankton, algae, sponges, cnidarians, bryozoans, mollusk, tunicates and echinoderms, which are known to produce a wide variety of bioactive secondary metabolites with pharmacological properties. Many new therapeutic drugs have emerged from marine invertebrates, although the large algal community is yet to be explored. The bioactivity possessing secondary metabolites of marine algae include polyphenols, phlorotannins, alkaloids, halogenated compounds, sulfated polysaccharides, agar, carrageenan, proteoglycans, alginate, laminaran, rhamnan sulfate, galactosylglycerol, and fucoidan. These metabolites have been found to have great antimicrobial activities against many human aliments. Studies show that the algal community represents about 9% of biomedical compounds obtained from the sea. This review looks at the evolution of drugs from the ocean, with a special emphasis on the antimicrobial activities of marine algae.