• 제목/요약/키워드: Gait performance

검색결과 263건 처리시간 0.022초

만성 뇌졸중 환자들의 Sit to Stand Test의 임상적 유용성 (The Usability of Sit to Stand Test Performance in Chronic Stroke)

  • 조휘영;안승헌;이윤복;홍현화;이규창
    • 대한물리의학회지
    • /
    • 제8권4호
    • /
    • pp.549-558
    • /
    • 2013
  • PURPOSE: This study is designed as a retrospective study, and identified the clinical usability of Sit to Stand (STS) test for predicting of fall incidence in stroke patients who experienced a fall within 1 year. METHODS: Between July 2011 and November 2012, 69 inpatients with stroke in K rehabilitation hospital were participated under voluntarily signing the informed consent form. STS test and 10m walk test (10MWT) were used to assess the muscle strength of lower-extremity and walking velocity, respectively. Also, we tested dynamic balance and motor function of lower-extremity in affected-side using with the Berg balance scale (BBS) and the Fugl-Meyer assessment of lower extremity (FM-L/E). METHODS: There were significant differences between subjects with fall-experienced group and without subjects without fall-experienced group in STS test, 10MWT, BBS scores and FM-L/E. STS test significantly showed a negative correlation between 10MWT (r=-.657), BBS (r=-.512), and FM-L/E (r=-.563). And, 10MWT have a influence on the performance of STS test (the capacity of explanation = 20%). The cut-off value of STS performance predicting falls experience is ${\geq}14.36$ seconds (sensitivity=76%; specificity=79%, area under curve=.785). According to logistic regression analysis of falls experience, subjects ${\geq}14.36$ s showed that 4.164 times (odd ratio) increased in falls than subjects < 14.36 s in STS test. CONCLUSION: This study demonstrated that STS test may be a useful tool predicting and measuring falls in patients with stroke. Further study will be needed to elucidate the kinematic analysis of STS test and the relationship between physical activity level and falls in stroke patients.

보행기호잇기검사: 새로운 신체 및 인지 기능에 대한 이중 과제 평가도구로서의 효용성에 대한 예비연구 (Stepping Trail Making Test: Preliminary Study for the Effectiveness of the Novel Dual Task Assessment Tool for Physical and Cognitive Functions in Elderly )

  • 엄주리;이병주
    • 대한물리의학회지
    • /
    • 제18권2호
    • /
    • pp.41-48
    • /
    • 2023
  • PURPOSE: Falls are caused by a decline in physical and cognitive function. A quantitative evaluation tool that can comprehensively evaluate motor and cognitive functions for elderly people with an impaired physical function. This study assessed the clinical application potential by confirming the correlation between the physical function tests, cognitive and the stepping trail-making test (S-TMT). METHODS: Fourteen community-dwelling older patients (65-75 years) were recruited. The study conducted cognitive function tests with the trail-making test (TMT-A, B), and physical function tests (6-minute walking test (6MWT), short physical performance battery (SPPB), and timed up and go (TUG)). The results of were analyzed using SPSS version 21.0. Descriptive statistics were used for the general characteristics of the study subjects, and the correlations between S-TMT, other functional tests were examined through Pearson's correlation analysis. The statistical significance was set to .05. RESULTS: S-TMT had a significant positive correlation with the TUG (r = .588*) and trail-making test-B (TMT-B) (r = .689*, p < .05). Furthermore, S-TMT showed a negative correlation between SPPB (r = -.397) and 6MWT (r = -.422), but it was not statistically significant. CONCLUSION: S-TMT is a cognitive-gait dual-task performance evaluation tool that can be performed safely. A significant correlation was confirmed between the TUG test and the TMT-B. S-TMT is a dual-task screening tool that can evaluate both physical and cognitive functions simultaneously.

골프스윙시 근육협응관계 구명을 위한 EMG 분석 (EMG Analysis for Investigation Muscle-Collaborated Relationship during Golf Swing)

  • 심태용;신성휴;오승일;문정환
    • 한국운동역학회지
    • /
    • 제14권3호
    • /
    • pp.177-189
    • /
    • 2004
  • Kinematic and kinetic analysis using 3D Motion Capture system are common, yet there is little in the literature that discuss the relationship and coactivity between muscles during the golf swing. The purpose of this study was to describe the relationship between the employed 16 muscles during golf swing. We could observe 3 muscle patterns such as 'Line' shape, 'L' shape, and 'Loop' shape for the golf swing activity. The 'Line' shape indicates that two muscles act almost perfectly in phase, and the 'L' shape represents that two muscles act in a reciprocating manner(When one is active, the other is quiescent and vice versa). And the 'Loop' shape indicates that two muscles act sequently(After one is active, the other act). In these results, we knew the muscle patterns during golf swing is similar to the patterns during gait. And we presented it was possible to show the consistence of golf swing through the frequency analysis of muscle patterns. We believe that the results potentially useful for the golf players and coaches to analyze their performance.

하지 근육 시너지 분석 기반의 FES 시스템이 보행 시 뇌졸중 환자의 족하수 개선에 미치는 영향: 사례 연구 (The effect of lower limb muscle synergy analysis-based FES system on improvement of the foot drop of stroke patient during walking: a case study)

  • 임태현
    • 한국산업융합학회 논문집
    • /
    • 제23권3호
    • /
    • pp.523-529
    • /
    • 2020
  • Foot drop is a common symptom in stroke patients due to central nervous system (CNS) damage, which causes walking disturbances. Functional electrical stimulation (FES) is an effective rehabilitation method for stroke patients with CNS damage. Aim of this study was to determine the effectiveness of 6 weeks FES walking training based lower limb muscle synergy of stroke patients. Lower limb muscle synergies were extracted from electromyography (EMG) using a non-negative matrix factorization algorithm (NMF) method. Cosine similarity and cross correlation were calculated for similarity comparison with healthy subjects. In both stroke patients, the similarity of leg muscle synergy during walking changed to similar to that of healthy subjects due to a decrease in foot drop during. FES walking intervention influenced the similarity of muscle synergies during walking of stroke patients. This intervention has an effective method on foot drop and improving the gait performance of stroke patients.

On methods for extending a single footfall trace into a continuous force curve for floor vibration serviceability analysis

  • Chen, Jun;Peng, Yixin;Ye, Ting
    • Structural Engineering and Mechanics
    • /
    • 제46권2호
    • /
    • pp.179-196
    • /
    • 2013
  • An experimentally measured single footfall trace (SFT) from a walking subject needs to be extended into a continuous force curve, which can then be used as load for floor vibration serviceability assessment, or on which further analysis like discrete Fourier transform can be conducted. This paper investigates the accuracy, applicability and parametrical sensitivity of four extension methods, Methods I to IV, which extends the SFT into a continuous time history by the walking step rate, stride time, double support proportion and the double support time, respectively. Performance of the four methods was assessed by comparing their results with the experimentally obtained reference footfall traces in the time and frequency domain, and by comparing the vibrational response of a concrete slab subjected to the extended traces to that of reference traces. The effect of the extension parameter on each method was also explored through parametrical analysis. This study finds that, in general, Method I and II perform better than Method III and IV, and all of the four methods are sensitive to their extension parameter. When reliable information of walking rate or gait period is available in the test, Methods I or II is a better choice. Otherwise, Method III, with the suggested extension parameter of double support time proportion, is recommended.

노인의 인지기능에 따른 일상생활동작 수행능력 비교 연구 (A Comparative Study of ADL Performance of Cognitive Function in Elderly)

  • 이광재;김순자
    • 대한물리치료과학회지
    • /
    • 제19권2호
    • /
    • pp.55-61
    • /
    • 2012
  • Background : The purpose of this study is to provide the basic data according to cognitive function, that will help activities of daily living of the elderly through the comparative study of activities daily living and functional training. Methods : The subjects of this study 122 patients 65 years old or more ADL and cognitive function assessment was evaluated. They were registered in the Elderly in nursing homes and welfare centers, located in Gyeonggi. All study participants had a sufficient explanation for the purposes of research and evaluation methods and procedures for the elderly. The survey period 17 October to 11 November 2011 was conducted through face-to-face survey was conducted. Results : Cognitive function according to the K-MMSE score of 24 points or more, 23 to 18 points, 17 points or less were classified. Ability to perform activities of daily living (personal hygiene, bathing, toilet use, stair climbing, dressing, stool control, urinary control, gait, chair/bed, etc.) according to the degree of cognitive function by evaluating the ability to perform daily living compared results in all variables were statistically significant (p<.5). Conclusion : As a result, the higher cognitive functions can be seen that the higher the ability to perform activities of daily living.

  • PDF

슬라이딩모드 제어기를 이용한 보행 훈련 로봇 팔의 힘제어 (Force Control of an Arm of Walking Training Robot Using Sliding Mode Controller)

  • 신호철;강창회;정승호;김승호
    • 한국정밀공학회지
    • /
    • 제19권12호
    • /
    • pp.38-44
    • /
    • 2002
  • A walking training robot is proposed to provide stable and comfortable walking supports by reducing body weight load partially and a force control of an arm of walking training robot using sliding mode controller is also proposed. The current gait training apparatus in hospital are ineffective for the difficulty in keeping constant unloading level and for the constraint of patients' free walking. The proposed walking training robot effectively unloads body weight during walking. The walking training robot consists of an unloading manipulator and a mobile platform. The manipulator driven by an electro-mechanical linear mechanism unloads body weight in various levels. The mobile platform is wheel type, which allows patients to walt freely. The developed unloading system has advantages such as low noise level, lightweight, low manufacturing cost and low power consumption. A system model fur the manipulator is established using Lagrange's equation. To unload the weight of the patients, sliding mode control with p-control is adopted. Both control responses with a weight and human walking control responses are analyzed through experimental implementation to demonstrate performance characteristics of the proposed force controller.

A Multi-Level Integrator with Programming Based Boosting for Person Authentication Using Different Biometrics

  • Kundu, Sumana;Sarker, Goutam
    • Journal of Information Processing Systems
    • /
    • 제14권5호
    • /
    • pp.1114-1135
    • /
    • 2018
  • A multiple classification system based on a new boosting technique has been approached utilizing different biometric traits, that is, color face, iris and eye along with fingerprints of right and left hands, handwriting, palm-print, gait (silhouettes) and wrist-vein for person authentication. The images of different biometric traits were taken from different standard databases such as FEI, UTIRIS, CASIA, IAM and CIE. This system is comprised of three different super-classifiers to individually perform person identification. The individual classifiers corresponding to each super-classifier in their turn identify different biometric features and their conclusions are integrated together in their respective super-classifiers. The decisions from individual super-classifiers are integrated together through a mega-super-classifier to perform the final conclusion using programming based boosting. The mega-super-classifier system using different super-classifiers in a compact form is more reliable than single classifier or even single super-classifier system. The system has been evaluated with accuracy, precision, recall and F-score metrics through holdout method and confusion matrix for each of the single classifiers, super-classifiers and finally the mega-super-classifier. The different performance evaluations are appreciable. Also the learning and the recognition time is fairly reasonable. Thereby making the system is efficient and effective.

인공발(Prosthetic Foot) 스프링용 유리섬유강화 적층재의 적층배향에 따른 층간분리거동 해석 (Analysis of Delamination Behavior on the Stacking Sequence of Prosthetic Foot Keel in Glass fiber Reinforced Laminates)

  • 송삼홍;김철웅
    • 대한기계학회논문집A
    • /
    • 제27권4호
    • /
    • pp.623-631
    • /
    • 2003
  • It is considered that the application of advanced composite materials to the prostheses for the disables is important to improve their bio-mechanical performance. Particularly, energy storing foot prosthesis is mostly important to restore gait ability of the disables with low-extremity amputation since it could provide propulsion at terminal stance enhancing the disables ability to walk long distance even run and jump. Therefore, the energy storing spring of Prosthetic foot keel under cyclic bending moment use mainly of high strength glass fiber reinforced plastic. The main objective of this study was to evaluate the stacking sequence effect using the delamination growth rate(dA$_{D}$/dN) of energy storing spring in glass fiber reinforced plastic under cyclic bending moment. The test results indicated that the shape of delamination zone depends on stacking sequence in GFRP laminates. Delamination area(A$_{D}$) turns out that variable types with the contour increased non-linearly toward the damage zones.nes.

목표 ZMP 궤적 기반 휴머노이드 로봇 이족보행의 최적 관절궤적 생성 (Optimal Joint Trajectory Generation for Biped Walking of Humanoid Robot based on Reference ZMP Trajectory)

  • 최낙윤;최영림;김종욱
    • 로봇학회논문지
    • /
    • 제8권2호
    • /
    • pp.92-103
    • /
    • 2013
  • Humanoid robot is the most intimate robot platform suitable for human interaction and services. Biped walking is its basic locomotion method, which is performed with combination of joint actuator's rotations in the lower extremity. The present work employs humanoid robot simulator and numerical optimization method to generate optimal joint trajectories for biped walking. The simulator is developed with Matlab based on the robot structure constructed with the Denavit-Hartenberg (DH) convention. Particle swarm optimization method minimizes the cost function for biped walking associated with performance index such as altitude trajectory of clearance foot and stability index concerning zero moment point (ZMP) trajectory. In this paper, instead of checking whether ZMP's position is inside the stable region or not, reference ZMP trajectory is approximately configured with feature points by which piece-wise linear trajectory can be drawn, and difference of reference ZMP and actual one at each sampling time is added to the cost function. The optimized joint trajectories realize three phases of stable gait including initial, periodic, and final steps. For validation of the proposed approach, a small-sized humanoid robot named DARwIn-OP is commanded to walk with the optimized joint trajectories, and the walking result is successful.