• 제목/요약/키워드: Gait Simulation

검색결과 106건 처리시간 0.027초

유전 알고리즘을 이용한 휴머노이드 로봇의 동작연구 (Motion Study for a Humanoid Robot Using Genetic Algorithm)

  • 공정식;이보희;김진걸
    • 한국정밀공학회지
    • /
    • 제23권7호
    • /
    • pp.84-92
    • /
    • 2006
  • This paper deals with determination of motions of a humanoid robot using genetic algorithm. A humanoid robot has some problems of the structural instability basically. So, we have to consider the stable walking gait in gait planning. Besides, it is important to make the smoothly optimal gait for saving the electric power. A mobile robot has battery to move autonomously. But a humanoid robot needs more electric power in order to drive many joints. So, if movements of walking joint don't maintain optimally, it is hard to sustain the battery power during the working period. Also, if a gait trajectory doesn't have optimal state, the expected lift span of joints tends to be decreased. Also, if a gait trajectory doesn't have optimal state, the expected lift span of joints tends to be decreased. To solve these problems, the genetic algorithm is employed to guarantee the optimal gait trajectory. The fitness functions in a genetic algorithm are introduced to find out optimal trajectory, which enables the robot to have the less reduced jerk of joints and get smooth movement. With these all process accomplished by PC-based program, the optimal solution could be obtained from the simulation. In addition, we discuss the design consideration fur the joint motion and distributed computation of tile humanoid, ISHURO, and suggest its result such as structure of the network and a disturbance observer.

상하지 연동된 새로운 보행재활 로봇의 설계 (Design of a Novel Gait Rehabilitation Robot with Upper and Lower Limbs Connections)

  • 윤정원;본단노반디;크리스티앤드
    • 제어로봇시스템학회논문지
    • /
    • 제14권7호
    • /
    • pp.672-678
    • /
    • 2008
  • This paper proposes a new rehabilitation robot with upper and lower limb connections for gait training. As humans change a walking speed, their nervous systems adapt muscle activation patterns to modify arm swing for the appropriate frequency. By analyzing this property, we can find a relation between arm swinging and lower limb motions. Thus, the lower limb motion can be controlled by the arm swing for walking speed adaptation according to a patent's intension. This paper deals with the design aspects of the suggested gait rehabilitation robot, including a trajectory planning and a control strategy. The suggested robot is mainly composed of upper limb and lower limb devices, a body support system. The lower limb device consists of a slider device and two 2-dof footpads to allow walking training at uneven and various terrains. The upper limb device consists of an arm swing handle and switches to use as a user input device for walking. The body support system will partially support a patient's weight to allow the upper limb motions. Finally, we showed simulation results for the designed trajectory and controller using a dynamic simulation tool.

정상인에서 쭈그림보행 시뮬레이션 시 관찰된 보상적 전략 (Compensatory Strategy Observed in the Simulated Crouch Gait of Healthy Adults)

  • 김택훈;권오윤;이충휘;조상현;권혁철;김영호
    • 한국전문물리치료학회지
    • /
    • 제11권1호
    • /
    • pp.53-67
    • /
    • 2004
  • This simulation study investigated the characteristics of normal gait, $30^{\circ}$ crouch gait, $30^{\circ}$ crouch/equinus gait, $45^{\circ}$ crouch gait, $45^{\circ}$ crouch/equinus gait. The knee flexion angles were restricted using a specially designed orthosis. This study was carried out in a motion analysis laboratory of the National Rehabilitation Center. Fifteen healthy male subjects were recruited for the study. The purposes of this study were (1) to compare spatiotemporal parameters, kinematics, and kinetic variables in the sagittal plane among the different gait, (2) to investigate the secondary compensatory strategy, and (3) to suggest biomechanical physical therapy treatment methods. The pattern and magnitude observed in each condition were similar to those of normal gait, except the peak knee extension moment of the unrestricted ankle motion-crouch gait. However, the speed of the $45^{\circ}$ crouch gait was half that of a normal gait. The ankle joint moment in the crouch/equinus gait showed the double-bump pattern commonly observed in children with spastic cerebral palsy, and there was no significant difference in gait speed as compared with normal gait. The peak ankle plantar-flexor moment and ankle power generated during the terminal stance in the crouch/equinus conditions were reduced as compared with normal and $45^{\circ}$ crouch gaits (p<.05). The crouch/equinus gait at the ankle joint was an effective compensatory mechanism. Since ankle plantarflexion contracture can be exacerbated secondary to the ankle compensatory strategy in the crouch/equinus gait, it is necessary to increase the range of ankle dorsiflexion and the strength of plantarflexion simultaneously to decrease the abnormal biomechanical advantages of the ankle joint.

  • PDF

휴머노이드 로봇의 자세 제어에 관한 연구 (A Study on the Posture Control of a Humanoid Robot)

  • 김진걸;이보희;공정식
    • 제어로봇시스템학회논문지
    • /
    • 제11권1호
    • /
    • pp.77-83
    • /
    • 2005
  • This paper deals with determination of motions of a humanoid robot using genetic algorithm. A humanoid robot has some problems of the structural instability basically. So, we have to consider the stable walking gait in gait planning. Besides, it is important to make the smoothly optimal gait for saving the electric power. A mobile robot has a battery to move autonomously. But a humanoid robot needs more electric power in order to drive many joints. So, if movements of walking joints don't maintain optimally, it is difficult for a robot to have working time for a long time. Also, if a gait trajectory doesn't have optimal state, the expected life span of joints tends to be decreased. To solve these problems, the genetic algorithm is employed to guarantee the optimal gait trajectory. The fitness functions in a genetic algorithm are introduced to find out optimal trajectory, which enables the robot to have the less reduced jerk of joints and get smooth movement. With these all process accomplished by a PC-based program, the optimal solution could be obtained from the simulation. In addition, we discuss the design consideration for the joint motion and distributed computation of the humanoid, ISHURO, and suggest its result such as the structure of the network and a disturbance observer.

다중 특징점 검출을 이용한 보행인식 (Gait Recognition Using Multiple Feature detection)

  • 조운;김동현;백준기
    • 대한전자공학회논문지SP
    • /
    • 제44권6호
    • /
    • pp.84-92
    • /
    • 2007
  • 본 연구는 원거리에서 걸음걸이 (보행)의 특성을 분석하여 인간을 식별하는 보행인식 (gait recognition) 기술을 다중 특징점 기반으로 확장하여 인식률 및 오류 내성을 향상시키는 기술을 제안한다. 보다 구체적으로 i)움직임 검출, ii) 객체 영역 검출, iii) 머리 영역 검출, 그리고, iv) 능동 형태 모델을 이용하여 기본 알고리듬 (gait baseline algorithm)의 문제점인 전처리 과정없이 그림자 영향과 낮은 인식률을 개선하였다. 제안된 알고리듬은 HumanID Gait Challenge (HGCD) 데이터집합을 이용한 실험을 통해 환경 변화요인에도 강건한 인간 보행인식이 가능함을 확인할 수 있다.

기계학습 모델을 이용한 노인보행과 비노인보행의 구별 방법에 관한 연구 (A Study on the Method of Differentiating Between Elderly Walking and Non-Senior Walking Using Machine Learning Models)

  • 김가영;정수환;엄수현;장성원;이소연;최상일
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제10권9호
    • /
    • pp.251-260
    • /
    • 2021
  • 보행 분석은 인간의 걸음걸이를 분석하여 보행과 관련된 여러 다양한 정보를 얻기 위한 연구 분야 중 하나로써 의료 분야뿐만 아니라 기계공학, 전자공학 및 컴퓨터공학 등 다양한 학문 분야에서 오랫동안 연구되고 있다. 보행 분석을 통해 걸음걸이에 문제가 있는지를 파악하려는 노력이 꾸준히 이어져 왔다. 본 논문에서는 이러한 보행 이상을 알아보기 위한 전 단계로써 보행 데이터를 활용하여 동일 실험 참가자에 대해 노인 체험복착용 전후의 걸음걸이를 기계학습 모델에 적용하여 학습시킴으로써 노인 체험복 착용 여부를 구별할 수 있는지를 연구하였다. 총 45명의 실험 참가들을 대상으로 노인 체험복 착용 전과 후 각각의 보행 데이터를 수집하였고, 총 6개의 기계학습 모델을 이용하여 보행 데이터를 학습시켰다. 신경망 모델을 활용하여 노인 체험복 착용 여부를 판별한 결과 약 99%의 높은 정확도를 보였다. 본 연구에서 시사하는 것은 기계학습을 활용하여 보행의 이상 유무를 판단할 수 있는 가능성을 모색했다는 데 있다.

Biped Gait Generation based on Linear Inverted Pendulum Mode On Flexible Terrain

  • Ueno, Satoshi;Igata, Kazuma;Kumon, Makoto;Mizumoto, Ikuro;Iwai, Zenta
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.203-208
    • /
    • 2003
  • In this paper, gait generation algorithm based on Linear Inverted Pendulum Mode is extended considering that the terrain is uncertain and flexible. Deformation of the soft terrain by the weight of the biped robot is taken into account to design the desired motion of the swing leg. Landing time disagreement caused by dynamics of the robot is also considered and a method to adjust gait is proposed. Results of numerical simulation show the effectiveness of the proposed method.

  • PDF

네트워크를 통해 동작하는 애완 로봇 시뮬레이터 (Pet Robot Simulator Coordinated over Network)

  • 이성훈;이수영;최병욱
    • 제어로봇시스템학회논문지
    • /
    • 제15권5호
    • /
    • pp.530-537
    • /
    • 2009
  • A graphic simulator can be a useful tool for planning gaits or dynamic behaviors to a walking pet robot. Microsoft describes robotics developer studio (MSRDS) as an end-to-end robotics development platform including simulation engine based on dynamics. In this paper, we propose a pet robot simulator (PRS), based on MSRDS, which supports interactively controlled two walking robots connected over network. To be pet robot simulator, modeling a commercial pet robot is performed and gait planning is also implemented. By using concurrency and coordination runtime (CCR) and decentralized software services (DSS) of MSRDS software platform, we connect two robots which are displayed together but controlled separately over network. The two walking pet robots can be simulated interactively by joysticks. It seems to be an internet game for pet robots.

레일형 보행보조기구의 방향전환을 위한 턴 롤러 시스템 개발 (Development of the Turn Roller System for Changing the Direction of Rail-type Gait Training System)

  • 김지욱;양민석;우준우;김민수;손정현;정부환
    • 동력기계공학회지
    • /
    • 제20권4호
    • /
    • pp.19-25
    • /
    • 2016
  • It is needed to use the gait training system for the rehabilitation of the disabled and old people. In this study, a gait training system of turn roller type is proposed for the purpose of helping the rehabilitation. A driving mechanism with the turn roller is designed by using the RecurDyn which is the dynamic analysis program. RecurDyn is used to analyze the dynamic behavior of the gait training system. The static load analysis is carried out to investigate the safety of this system. From the operating test of this system, it is noted that the driving error is little and the load capacity is 130 kgf.

가속도계를 이용한 왕복보행보조기의 고관절 시스템 해석 -인체 진동해석과 FEM 해석을 중심으로- (Analysis on a Hip Joint System of New RGO Using Accelerometers)

  • 김명회;장대진;장영재;박영필
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.882-887
    • /
    • 2003
  • This paper presented a design and control of a new RGO(reciprocating gait orthosis)and its simulation. The new RGO was distinguished from the other one by which had a very light-weight and a new RGO(reciprocating gait orthosis) system. The vibration evaluation of the hip joint system on the new RGO(reciprocating gait orthosis)was used to access by the 3-axis accelerometer with a low frequency vibration of less than 30 ㎐. The gait of the new RGO depended on the constrains of mechanical kinematics and the initial posture. The stability of dynamic walking was investigated by analyzing the ZMP (zero moment point) of the new RGO. It was designed according to the human wear type and was able to accomodate itself to the environments of S.C.I. Patients. The joints of each leg were adopted with a good kinematic characteristics. To analyse joint kinematic properties, we made the hip joint system of FEM and the hip joint system by 1-axis and 3-axis Accelerometers.

  • PDF