• Title/Summary/Keyword: Gain Control

Search Result 4,546, Processing Time 0.035 seconds

Sensorless Speed Control Algorithm of IPMSM for Wide Speed Range with an Improved Full-Order Flux Observer (향상된 전차원 자속 관측기를 이용한 매입형 영구자석 동기 전동기의 넓은 영역 센서리스 속도제어 알고리즘 기법)

  • Kang, Seong Yun;Yoon, Jae Seung;Shin, Hye Ung;Lee, Kyo-Beum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.339-346
    • /
    • 2017
  • This paper proposes a sensorless control method to improve the performance of an internal permanent magnet synchronous motor (IPMSM) control by using a full-order flux observer in a wide speed range. The conventional sensorless control method uses a constant gain for high performance at low-speed region. However, this method has drawbacks such as an increased angle error and current ripple in the high-speed region due to the fixed gain value. In order to overcome this problem, the gain of the full-order flux observer is changed by considering the angle error in the whole speed range. The proposed method minimizes the angle error for each region of the speed range by applying a relevant gain value, which improves the current ripple reduction and motor noise cancellation. The validity of proposed sensorless control method is verified by a simulation and an experiment.

Active Vibration Control of a Composite Beam Using Piezoelectric Films (압전필름을 이용한 복합재료 외팔보의 능동진동제어)

  • Kim, S.H.;Choi, S.B.;Cheong, C.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.1
    • /
    • pp.54-62
    • /
    • 1994
  • This paper presents active control methodologies to suppress structural deflections of a composite beam using a distributed piezoelectric-film actuator and sensor. Three types of different controllers are employed to achieve vibration suppression. The controllers are established depending upon the information on the velocity components of the structrue and on the deflection magnitudes as well. They are constant-amplitude controller(CAC), constant-gain mcontroller(CGC), and constant-amplitude-gain controller(CAGC). For the minimization of the residual vibration (chattering in a settled phase), which is the practical shortcoming of the conventional CAC dur to time delay phenomenon of the hardware system, a new control algoritym CAGCis designed by selecting switching constants in an optimal manner with respect to the initial tip deflection and the applied voltage. The experimental investigations of the transient and forced vibration control for the first vibrational mode are undertaken in order to compare the suppression efficiency of each control algorithm. Moreover, simultaneous controllability of various vibrational modes through the proposed scheme is also experimentally verified by pressenting both the transfer function and the phase.

  • PDF

PID Control Structure for Model Following Control (모델 추종 제어를 위한 PID 제어기법)

  • 이창호;김종진;하홍곤
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.2
    • /
    • pp.138-142
    • /
    • 2004
  • This paper proposes the design of the model following control system using the PID control structure. PID control system became model following control by inserting new pre-compensator in order to improve control performance in discrete-time region. Gain of the PID controller needs to be readjusted when response of system changes due to disturbance or load fluctuation. Performance of control system improves by joining neural network to PID control system because performance of control system depends largely on each PID gain in PID control system. And the games of the PID controller in the proposed control system are automatically adjusted by back-propagation algorithm of the neural network. Angular position of DC servo motor is selected as a plant in order to verify control performance in model following control. After it is applied to the position control system, it's performance is verified through computer experiment.

  • PDF

Call Admission Control Techniques of Mobile Communication System using SRN Models (SRN 모델을 이용한 이동통신 시스템의 호 수락 제어 기법)

  • 로철우
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.12
    • /
    • pp.529-538
    • /
    • 2002
  • Conventional method to reduce the handoff call blocking probability(PBH) in mobile communication system is to reserve a predetermined number of channels only for handoff calls. To determine the number of reserved channels, an optimization problem, which is generally computationally heavily involved, must be solved. In this Paper, we propose a call admission control (CAC) scheme that can be used to reduce the PBH without reserving channels in advance. For this, we define a new measure, gain, which depends on the state of the system upon the arrival of a new call. The proposed CAC decision rule relies on the gain computed when a new call arrives. SRN, an extended stochastic Petri nets, provides compact modeling facilities for system analysis can be calculated performance index by appropriate reward to the model. In this Paper, we develop SRN models which can perform the CAC with gain. The SRN models are 2 level hierarchical models. The upper layer models are the structure state model representing the CAC and channel allocation methods considering QoS with multimedia traffic The lower layer model Is to compute the gain under the state of the upper layer models.

Gain Scheduled Fuzzy Control on Aircraft Flight Control (게인 스케줄링 퍼지제어의 비행제어에 대한 적용)

  • 홍성경;심규홍;박성수
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.2
    • /
    • pp.125-130
    • /
    • 2004
  • This paper describes an approach for synthesizing a Fuzzy Logic Controller(FLC) that combines the benefits of fuzzy logic control and fuzzy logic gain scheduling for the F/A-18 aircraft. Specially, fuzzy rules are utilized on-line to determine the denoralization factor(Κ) of a feedback fuzzy controller based on the dynamic pressure(Q) indicateing the region of the flight envelop the aircraft is operating in. Simulation results demonstrate that the proposed FLC provides excellent compensation for time-varying and/or nonlinear characteristics of the aircraft, and that it also exhibits satisfactory robustness with noisy air data sensors.

Image-Based Robust Output Feedback Control of Robot Manipulators using High-Gain Observer (고이득 관측기를 이용한 영상기반 로봇 매니퓰레이터의 출력궤환 강인제어)

  • Jeon, Yeong-Beom;Jang, Ki-Dong;Lee, Kang-Woong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.8
    • /
    • pp.731-737
    • /
    • 2013
  • In this paper, we propose an image-based output feedback robust controller of robot manipulators which have bounded parametric uncertainty. The proposed controller contains an integral action and high-gain observer in order to improve steady state error of joint position and performance deterioration due to measurement errors of joint velocity. The stability of the closed-loop system is proved by Lyapunov approach. The performance of the proposed method is demonstrated by simulations on a 5-link robot manipulators with two degrees of freedom.

Stabilization and $H_\infty$ control of linear systems with static output feedback (상수 출력궤환 선형 시스템의 안정화 및 $H_\infty$ 제어기 설계)

  • Kim, Hyeong-Jin;Kim, Myeong-Soon;Kim, Jin-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.111-114
    • /
    • 2003
  • In this paper, we consider the stabilization and $H_\infty$ control of linear systems with static output feedback control. The static output feedback control represents the simplest closed-loop control that can be realized in practice, and, moreover, it is less expensive to be implemented and is more reliable. In spite of its advantages, it is one of the open problems which is not sloved analytically or numerically yet. After decompose the closed-loop system into feedback form, by adopting the small gain theorem, we obtain a sufficient condition for stabilization and a sufficient condition for It control expressed as linear matrix inequalites. Finally, we show the usefulness of our results by a numerical example.

  • PDF

Improvement of Microstep Characteristics in Hydrostatic Table with Ballscrew (볼스크류로 구동되는 유정압테이블의 미소이송특성 향상)

  • 황주호;박천홍;이찬홍;이후상
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.1
    • /
    • pp.94-100
    • /
    • 1998
  • Microstep characteristics largely depends on the variation of friction force induced by the geometric accuracy of ballscrew, guide rail and the control characteristics of servo unit. In this paper, for improving the microstep characteristics of hydrostatic table with ballscrew, microstep resolution according to the control mode of servo amplifier and response characteristic by the variation of integral gain are tested and compared. Relationship between micro motion behavior of hydrostatic table and the output torque is also tested for acquiring the effective variables on control characteristics. From the results. it is confirmed that the torque control mode has a advantage in microstep resolution, and more stable than velocity control mode in low feed rate, and by the increase of integral gain in the elastic motion realm, response characteristics can be improved.

  • PDF

Design of Neuro-Fuzzy Controller using Relative Gain Matrix (상대이득행렬을 이용한 뉴로 퍼지 제어기의 설계)

  • 서삼준;김동식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.157-157
    • /
    • 2000
  • In the fuzzy control for the multi-variable system, it is difficult to obtain the fuzzy rule. Therefore, the parallel structure of the independent single input-single output fuzzy controller using a pairing between the input and output variable is applied to the multi-variable system. The concept of relative gain matrix is used to obtain the input-output pairs. However, among the input/output variables which are not paired the interactive effects should be taken into account. these mutual coupling of variables affect the control performance. Therefore, for the control system with a strong coupling property, the control performance is sometimes lowered. In this paper, the effect of mutual coupling of variables is considered by tile introduction of a simple compensator. This compensator adjusts the degree of coupling between variables using a neural network. In this proposed neuro-fuzzy controller, the Neural network which is realized by back-propagation algorithm, adjusts the mutual coupling weight between variables.

  • PDF

Design of $H_{\infty}$ Controllers for Linear Systems with Input Saturation (입력 포화 특성을 갖는 선형 시스템의 $H_{\infty}$ 제어기 설계)

  • Song, Yong-Heui;Kim, Jin-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2040-2042
    • /
    • 2002
  • In this paper, we consider the design of gam scheduled controllers for linear systems with input saturation. We obtain a reachable set and a control gain, which guarantees that the controls are never saturated inside this reachable set and that the $L_2$ gain is minimized, from matrix inequalities. This proposed gain scheduled control gives better performance than that of static control case, and we present the simulation results to show the usefulness of the proposed control.

  • PDF