• Title/Summary/Keyword: Gafchromic EBT3

Search Result 41, Processing Time 0.019 seconds

Linear Energy Transfer Dependence Correction of Spread-Out Bragg Peak Measured by EBT3 Film for Dynamically Scanned Proton Beams

  • Lee, Moonhee;Ahn, Sunghwan;Cheon, Wonjoong;Han, Youngyih
    • Progress in Medical Physics
    • /
    • v.31 no.4
    • /
    • pp.135-144
    • /
    • 2020
  • Purpose: Gafchromic films for proton dosimetry are dependent on linear energy transfers (LETs), resulting in dose underestimation for high LETs. Despite efforts to resolve this problem for single-energy beams, there remains a need to do so for multi-energy beams. Here, a bimolecular reaction model was applied to correct the under-response of spread-out Bragg peaks (SOBPs). Methods: For depth-dose measurements, a Gafchromic EBT3 film was positioned in water perpendicular to the ground. The gantry was rotated at 15° to avoid disturbances in the beam path. A set of films was exposed to a uniformly scanned 112-MeV pristine proton beam with six different dose intensities, ranging from 0.373 to 4.865 Gy, at a 2-cm depth. Another set of films was irradiated with SOBPs with maximum energies of 110, 150, and 190 MeV having modulation widths of 5.39, 4.27, and 5.34 cm, respectively. The correction function was obtained using 150.8-MeV SOBP data. The LET of the SOBP was then analytically calculated. Finally, the model was validated for a uniform cubic dose distribution and compared with multilayered ionization chamber data. Results: The dose error in the plateau region was within 4% when normalized with the maximum dose. The discrepancy of the range was <1 mm for all measured energies. The highest errors occurred at 70 MeV owing to the steep gradient with the narrowest Bragg peak. Conclusions: With bimolecular model-based correction, an EBT3 film can be used to accurately verify the depth dose of scanned proton beams and could potentially be used to evaluate the depth-dose distribution for patient plans.

Analysis of Small-Field Dosimetry with Various Detectors

  • Park, So-Yeon;Choi, Byeong Geol;Lee, Dong Myung;Jang, Na Young
    • Progress in Medical Physics
    • /
    • v.29 no.4
    • /
    • pp.164-172
    • /
    • 2018
  • We evaluated the performance of various detectors for small-field dosimetry with field sizes defined by a high-definition (HD) multileaf collimator (MLC) system. For small-field dosimetry, diodes referred to as "RAZOR detectors," MOSFET detectors, and Gafchromic EBT3 films were used in this study. For field sizes less than $1{\times}1cm^2$, percent depth doses (PDDs) and lateral profiles were measured by diodes, MOSFET detectors, and films, and absolute dosimetry measurements were conducted with MOSFET detectors. For comparison purposes, the same measurements were carried out with a field size of $10{\times}10cm^2$. The dose distributions were calculated by the treatment planning system Eclipse. A comparison of the measurements with calculations yielded the percentage differences. With field sizes less than $1{\times}1cm^2$, it was shown that most of the percentage difference values were within 5% for 6-MV and 15-MV photon beams with the use of diodes. The measured lateral profiles were well matched with those calculated by Eclipse as the field sizes increased. Except for the depths of 0.5 cm and 20 cm, there was agreement in terms of the absolute dosimetry within 10% when MOSFET detectors were used. There was good agreement between the calculations and measurements conducted using diodes and EBT films. Both diode detectors and EBT3 films were found to be appropriate options for relative measurements of PDDs and for lateral profiles.

Feasibility study of the usefulness of SRS thermoplastic mask for head & neck cancer in tomotherapy (두경부 종양의 토모치료 시 정위적방사선수술 마스크의 유용성 평가에 대한 연구)

  • Jeon, Seong Jin;Kim, Chul Jong;Kwon, Dong Yeol;Kim, Jong Sik
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.2
    • /
    • pp.355-362
    • /
    • 2014
  • Purpose : When head&neck cancer radiation therapy, thermoplastic mask is applied for patients with fixed. The purpose of this study is to evaluate usefulness of thermoplastic mask for SRS in tomotherapy by conparison with the conventional mask. Materials and Methods : Typical mask(conventional mask, C-mask) and mask for SRS are used to fix body phantom(rando phantom) on the same iso centerline, then simulation is performed. Tomotherapy plan for orbit and salivary glands is made by treatment planning system(TPS). A thick portion and a thin portion located near the treatment target relative to the mask S-mask are defined as region of interest for surface dose dosimetry. Surface dose variation depending on the type of mask was analyzed by measuring the TPS and EBT film. Results : Surface dose variation due to the type of mask from the TPS is showed in orbit and salivary glands 0.65~2.53 Gy, 0.85~1.84 Gy, respectively. In case of EBT film, -0.2~3.46 Gy, 1.04~3.02 Gy. When applied to the S-mask, in TPS and Gafchromic EBT3 film, substrantially 4.26%, 5.82% showed maximum changing trend, respectively. Conclusion : To apply S-mask for tomotherapy, surface dose is changed, but the amount is insignificant and be useful when treatment target is close critical organs because decrease inter and intra fractional variation.

Accuracy Evaluation of Tumor Therapy during Respiratory Gated Radiation Therapy (호흡동조방사선 치료 시 종양 치료의 정확도 평가)

  • Jang, Eun-Sung;Kang, Soo-Man;Lee, Chol-Soo;Kang, Se-Sik
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.22 no.2
    • /
    • pp.113-122
    • /
    • 2010
  • Purpose: To evaluate the accuracy of a target position at static and dynamic state by using Dynamic phantom for the difference between tumor's actual movement during respiratory gated radiation therapy and skin movement measured by RPM (Real-time Position Management). Materials and Methods: It self-produced Dynamic phantom that moves two-dimensionally to measure a tumor moved by breath. After putting marker block on dynamic phantom, it analyzed the amplitude and status change depending on respiratory time setup in advance by using RPM. It places marker block on dynamic phantom based on this result, inserts Gafchromic EBT film into the target, and investigates 5 Gy respectively at static and dynamic state. And it scanned investigated Gafchromic EBT film and analyzed dose distribution by using automatic calculation. Results: As a result of an analysis of Gafchromic EBT film's radiation amount at static and dynamic state, it could be known that dose distribution involving 90% is distributed within margin of error of 3 mm. Conclusion: As a result of an analysis of dose distribution's change depending on patient's respiratory cycle during respiratory gated radiation therapy, it is expected that the treatment would be possible within recommended margin of error at ICRP 60.

  • PDF

Measurement of Proton Beam Dose-Averaged Linear Energy Transfer Using a Radiochromic Film

  • Seohyeon An;Sang-il Pak;Seonghoon Jeong;Soonki Min;Tae Jeong Kim;Dongho Shin;Youngkyung Lim;Jong Hwi Jeong;Haksoo Kim;Se Byeong Lee
    • Progress in Medical Physics
    • /
    • v.33 no.4
    • /
    • pp.80-87
    • /
    • 2022
  • Purpose: Proton therapy has different relative biological effectiveness (RBE) compared with X-ray treatment, which is the standard in radiation therapy, and the fixed RBE value of 1.1 is widely used. However, RBE depends on a charged particle's linear energy transfer (LET); therefore, measuring LET is important. We have developed a LET measurement method using the inefficiency characteristic of an EBT3 film on a proton beam's Bragg peak (BP) region. Methods: A Gafchromic EBT3 film was used to measure the proton beam LET. It measured the dose at a 10-cm pristine BP proton beam in water to determine the quenching factor of the EBT3 film as a reference beam condition. Monte Carlo (MC) calculations of dose-averaged LET (LETd) were used to determine the quenching factor and validation. The dose-averaged LETs at the 12-, 16-, and 20-cm pristine BP proton beam in water were calculated with the quenching factor. Results: Using the passive scattering proton beam nozzle of the National Cancer Center in Korea, the LETd was measured for each beam range. The quenching factor was determined to be 26.15 with 0.3% uncertainty under the reference beam condition. The dose-averaged LETs were measured for each test beam condition. Conclusions: We developed a method for measuring the proton beam LET using an EBT3 film. This study showed that the magnitude of the quenching effect can be estimated using only one beam range, and the quenching factor determined under the reference condition can be applied to any therapeutic proton beam range.

Verification of skin dose according to the location of tumor in Tomotherapy (토모테라피 시 종양의 위치에 따른 피부선량 검증)

  • Yoon, Bo Reum;Park, Su Yeon;Park, Byoung Suk;Kim, Jong Sik;Song, Ki Won
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.2
    • /
    • pp.273-280
    • /
    • 2014
  • Purpose : To verify the skin dose in Tomotherapy-based radiation treatment according to the change in tumor locations, skin dose was measured by using Gafchromic EBT3 film and compared with the planned doses to find out the gap between them. Materials and Methods : In this study, to measure the skin dose, I'm RT Phantom(IBA Dosimetry, Germany) was utilized. After obtaining the 2.5mm CT images, tumor locations and skin dose measuring points were set by using Pinnacle(ver 9.2, Philips Medical System, USA). The tumor location was decided to be 5mm and 10mm away from surface of the phantom and center. Considering the attenuation of a Tomo-couch, we ensured a symmetric placement between the ceiling and floor directions of the phantom. The measuring point of skin doses was set to have 3mm and 5mm thickness from the surface. Measurement was done 3 times. By employing TomoHD(TomoHD treatment system, Tomotherapy Inc., Madison, Wisconsin, USA), we devised Tomotherapy plans, measured 3 times by inserting Gafchromic EBT3 film into the phantom and compared the measurement with the skin dose treatment plans. Results : The skin doses in the upper part of the phantom, when the tumor was located in the center, were found to be 7.53 cGy and 7.25 cGy in 5mm and 3mm respectively. If placed 5mm away from the skin in the ceiling direction, doses were 18.06 cGy and 16.89 cGy; if 10mm away, 20.37 cGy and 18.27 cGy, respectively. The skin doses in the lower part of the phantom, when the tumor was located in the center, recorded 8.82 cGy and 8.29 cGy in 5mm and 3mm, each; if located 5mm away from the lower part skin, 21.69 cGy and 19.78 cGy were respectively recorded; and if 10mm away, 20.48 cGy and 19.57 cGy were recorded. If the tumor was placed in the center, skin doses were found to increase by 3.2~17.1% whereas if the tumor is 5mm away from the ceiling part, the figure decreased to 2.8~9.0%. To the Tomo-couch direction, skin doses showed an average increase of 11% or over, compared to the planned treatment. Conclusion : This study found gaps between planned skin doses and actual doses in the Tomotherapy treatment planning. Especially to the Tomo-cocuh direction, skin doses were found to be larger than the planned doses. Thus, during the treatment of tumors near the Tomo-couch, doses will need to be more accurately calculated and more efforts to verify skin doses will be required as well.

Analysis of Changes in Skin Dose During Weight Loss when Tomotherapyof Nasopharynx Cancer (비인두암 토모테라피 시 체중 감소에 따른 피부선량 변화 분석)

  • Jang, Joon-Young;Kim, Dae Hyun;Choi, Cheon Woong;Kim, Bo-Hui;Park, Cheol-Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.3
    • /
    • pp.99-104
    • /
    • 2016
  • For patients receiving chemotherapy and radiation therapy treatment progresses as vomiting, nausea, weight of the patient because of a loss of appetite it is reduced. The patient's weight and the distance from the skin and the treatment site is expected to be closer, thereby reducing the change in the skin because of this dose. This study tests using a loose see the difference between the volume change appears as the weight of the patient using the same phantom and the phantom body of the patient. To using the same as the position EBT film is attached to the skin of the treatment site and was adjusted to the thickness of the Bolus. And using a computerized treatment planning only tomotherapy equipment was passed under the conditions according to the thickness of the radiation dose. To baseline for accurate reproduction position using the MVCT was applied to treated with verification. By passing a total of three dose reduced the error, it was a measure of the film by using a dedicated scanner, EBT VIDAR scanner. Got an increase in the skin dose is displayed each time the thickness of the bolus reduced, in a bolus was completely removed with the highest value. If the changes appeared dose was greater weight loss patients to chemotherapy and therefore bolus thickness variation considering the weight loss of the patient when applying the tomotherapy of nasopharynx cancer was found that the increase in skin dose be increased. This large patient before treatment due to weight loss over the image verification is considered to be established should consider how to re-create your mask and treatment plan for fixing it.

Practical Implementation of Patient-Specific Quality Assurance for Small and Multiple Brain Tumors in CyberKnife with Fixed Collimators

  • Lee, Eungman;Park, Kwangwoo;Kim, Jin Sung;Kim, Yong Bae;Lee, Ho
    • Progress in Medical Physics
    • /
    • v.29 no.2
    • /
    • pp.53-58
    • /
    • 2018
  • This paper evaluates patient-specific quality assurance (PSQA) in the treatment of small and multiple tumors by the CyberKnife system with fixed collimators, using an ion chamber and EBT3 films. We selected 49 patients with single or multiple brain tumors, and the treatment plans include one to four targets with total volumes ranging from 0.12 cc to 3.74 cc. All PSQA deliveries were performed with a stereotactic dose verification phantom. The A16 microchamber (Standard Imaging, WI, USA) and Gafchromic EBT3 film (Ashland ISP Advanced Materials, NJ, USA) were inserted into the phantom to measure the point dose of the target and the dose distribution, respectively. The film was scanned 1 hr after irradiation by a film digitizer scanner and analyzed using RIT software (Radiological Imaging Technology, CO, USA). The acceptance criteria was <5% for the point dose measurement and >90% gamma passing rate using 3%/3 mm and relative dose difference, respectively. The point dose errors between the calculated and measured dose by the ion chamber were in the range of -17.5% to 8.03%. The mean point dose differences for 5 mm, 7.5 mm, and 10 mm fixed cone size was -11.1%, -4.1%, and -1.5%, respectively. The mean gamma passing rates for all cases was 96.1%. Although the maximum dose distribution of multiple targets was not shown in the film, gamma distribution showed that dose verification for multiple tumors can be performed. The use of the microchamber and EBT3 film made it possible to verify the dosimetric and mechanical accuracy of small and multiple targets. In particular, the correction factors should be applied to small fixed collimators less than 10 mm.

Comparison of Linac-based VMAT Stereotatic Radiosurgery and Conventional Stereotatic Radiosurgery for Multiple Brain Lesions (Linac 기반 VMAT 정위적 수술 뇌 병변 연구와 기존의 정위적 방사선 수술 비교)

  • Jang, Eun-Sung;Chang, Bo-Seok
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.2
    • /
    • pp.239-246
    • /
    • 2021
  • Portal Dosimetry was verified using EPID to secure the clinical application and reliability of the existing research dose evaluation. The dose distribution of Geant4 was compared with the measured value by 360° rotational irradiation with a 2.5 cm cone for stereotactic brain surgery. To confirm the dose distribution of patients with brain metastasis, the dose distribution investigated by inserting a Gafchromic EBT film into the parietal phantom and the dose distribution obtained from the parietal phantom using VMAT are compared and applied to actual patients. As a result of the analysis, it was confirmed that the accuracy of the beam center and the center of the couch coincide accurately with an error within 1mm as a result of QA through a pin ball. In addition, it was confirmed that the EBT3 film has excellent linearity in the range of 0 to 10 Gy according to various dose irradiation. In the same setting as the two cervical phantoms, we confirm that the implementation and simulation results calculations of dose calculations based on Geant4 using photon beams match the experimental data within the treatment planning volume (PTV). Therefore, volume modulated arc treatment (VMAT) 360° rotational irradiation was performed, and the result of iso-dose distribution analysis by rotational irradiation confirmed that it is appropriate to include a virtual tumor.

Evaluation of superficial dose for Postmastectomy using several treatment techniques (유방전절제술을 시행한 환자에서 치료기법에 따른 피부선량 평가)

  • Song, Yong Min;Choi, Ji Min;Kim, Jin Man;Kwon, Dong Yeol;Kim, Jong Sik;Cho, Hyun Sang;Song, Ki Won
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.2
    • /
    • pp.225-232
    • /
    • 2014
  • Purpose : The purpose of this study was to evaluate the surface and superficial dose for patients requiring postmastectomy radiation therapy(PMRT) with different treatment techniques. Materials and Methods : Computed tomography images were acquired for the phantom(I'mRT, IBA) consisting of tissue equivalent material. Hypothetical chestwall and lung were outlined and modified. Five treatment techniques(Wedged Tangential; WT, 4-field IMRT, 7-field IMRT, TOMO DIRECT, TOMO HELICAL) were evaluated using only 6MV photon beam. GafChromic EBT3 film was used for dose measurements at the surface and superficial dose. Surface dose profiles around the phantom were obtained for each treatment technique. For superficial dose measurements, film were used inside the phantom and analyzed superficial region for depth from 1-6mm. Results : TOMO DIRECT showed the highest surface dose by 47~70% of prescribed dose, while 7-field IMRT showed the lowest by 35~46% of prescribed dose. For the WT, 4-field IMRT and 7-field IMRT, superficial dose were measured over 60%, 70%, and 80% for 1mm, 2mm, and 5mm depth, respectively. In case of TOMO DIRECT and TOMO HELICAL, over 75%, 80%, and 90% of prescribed dose was measured, respectively. Surface and superficial dose range were uniform in overall chestwall for the 7-field IMRT and TOMO HELICAL. In contrast, Because of the dose enhancement effect with oblique incidence, The dose was gradually increased toward the obliquely tangential angle for the WT and TOMO DIRECT. Conclusion : For PMRT, TOMO DIRECT and TOMO HELICAL deliver the higher surface and superficial doses than treatment techniques based linear accelerator. It showed adequate dose(over 75% of prescribed dose) at 1mm depth in skin region.