• Title/Summary/Keyword: Gabor transform

Search Result 65, Processing Time 0.027 seconds

Design of Fingerprints Identification Based on RBFNN Using Image Processing Techniques (영상처리 기법을 통한 RBFNN 패턴 분류기 기반 개선된 지문인식 시스템 설계)

  • Bae, Jong-Soo;Oh, Sung-Kwun;Kim, Hyun-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.6
    • /
    • pp.1060-1069
    • /
    • 2016
  • In this paper, we introduce the fingerprint recognition system based on Radial Basis Function Neural Network(RBFNN). Fingerprints are classified as four types(Whole, Arch, Right roof, Left roof). The preprocessing methods such as fast fourier transform, normalization, calculation of ridge's direction, filtering with gabor filter, binarization and rotation algorithm, are used in order to extract the features on fingerprint images and then those features are considered as the inputs of the network. RBFNN uses Fuzzy C-Means(FCM) clustering in the hidden layer and polynomial functions such as linear, quadratic, and modified quadratic are defined as connection weights of the network. Particle Swarm Optimization (PSO) algorithm optimizes a number of essential parameters needed to improve the accuracy of RBFNN. Those optimized parameters include the number of clusters and the fuzzification coefficient used in the FCM algorithm, and the orders of polynomial of networks. The performance evaluation of the proposed fingerprint recognition system is illustrated with the use of fingerprint data sets that are collected through Anguli program.

Face recognition in conjunction between GWT coefficients' energy and original image (GWT 계수 에너지와 원영상 결합을 이용한 얼굴 인식)

  • Han Jeong-Hoon;Hong Xiao-Fan;Kim Woo-Saeng
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06b
    • /
    • pp.304-306
    • /
    • 2006
  • 본 논문에서는 GWT(Gabor Wavelet Transform) 계수 에너지와 원 영상간의 영상 결합을 수행한 영상을 주성분 분석법(Principal Component Analysis)에 적용하여 얼굴 인식을 하는 방법을 제안한다. GWT는 가버 함수의 크기 변화와 방향 변화에 의해 생성된다. 따라서 GWT는 다양한 크기 변화와 방향 변화를 가지는 변환으로 특정 주파수 성분과 방향성을 가지는 영상 구조가 어디에 있는지의 지역적 정보를 효과적으로 표현할 수 있는 변환으로 알려져 있다. GWT를 통해 나온 계수 에너지를 추출하고 원 영상에 더하여 지역적 특성을 크게 만든 후에 통계적 방법 중 가장 많이 사용되어지고 검증을 받은 PCA를 사용하여 인식한다. GWT 계수의 에너지는 얼굴 윤곽선, 눈과 입, 얼굴과 머리의 경계 등 색감의 급격한 변화를 나타내는 곳의 정보를 표현을 해주기 때문에 특징점 추출에 사용되고 있지만 이를 전역적으로 이용하여 인식하는 방법에 관한 연구가 이루어지지 않고 있다. 본 논문에서는 에너지 값만으로 전체 얼굴 영상의 세부적 표현을 할 수 없기 때문에 원 영상과의 l:l 비율의 영상 결항을 한 후 얼굴 인식 처리에 사용한다. 이 영상을 얼굴인식에 사용하였을 때원본 영상을 사용하였을 때보다 오인식이 줄었다.

  • PDF

A Study on Face Recognition Method based on Binary Pattern Image under Varying Lighting Condition (조명 변화 환경에서 이진패턴 영상을 이용한 얼굴인식 방법에 관한 연구)

  • Kim, Dong-Ju;Sohn, Myoung-Kyu;Lee, Sang-Heon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.2
    • /
    • pp.61-74
    • /
    • 2012
  • In this paper, we propose a illumination-robust face recognition system using MCS-LBP and 2D-PCA algorithm. A binary pattern transform which has been used in the field of the face recognition and facial expression, has a characteristic of robust to illumination. Thus, this paper propose MCS-LBP which is more robust to illumination than previous LBP, and face recognition system fusing 2D-PCA algorithm. The performance evaluation of proposed system was performed by using various binary pattern images and well-known face recognition features such as PCA, LDA, 2D-PCA and ULBP histogram of gabor images. In the process of performance evaluation, we used a YaleB face database, an extended YaleB face database, and a CMU-PIE face database that are constructed under varying lighting condition, and the proposed system which consists of MCS-LBP image and 2D-PCA feature show the best recognition accuracy.

Rock Bolt Integrity Assessment in Time-Frequency Domain : In-situ Application at Hard Rock Site (유도파를 이용한 시간-주파수 영역 해석을 통한 록볼트 건전도 실험의 경암지반 현장 적용성 평가)

  • Lee, In-Mo;Han, Shin-In;Min, Bok-Ki;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.12
    • /
    • pp.5-12
    • /
    • 2009
  • As rock bolts become one of the main support systems in tunnels and underground structures, the integrity of the rock bolts affects the safety of these structures. The purpose of this study is the evaluation of rock bolt integrity using wavelet transforms of the guided ultrasonic waves by using transmission test in the field. After several rock bolts with various defect ratios are embedded into a large scale concrete block and rock mass, guided waves are generated by a piezo disk element and measured by an acoustic emission (AE) sensor. The captured signals are analyzed in the time-frequency domain using the wavelet transform based on a Gabor wavelet. Peak values in the time-frequency domain represent the interval of travel time of each echo. The energy velocities of the guided waves increase with an increase in the defect ratio. The suitable curing time for the evergy velocity analysis is proposed by the laboratory test, and in-situ tests are performed in two tunnelling sites to verify the applicability of rock bolt integrity tests performed after proposed curing time. This study proves that time-frequency domain analysis is an effective tool for the evaluation of the rock bolt integrity.

A Study on Iris Recognition by Iris Feature Extraction from Polar Coordinate Circular Iris Region (극 좌표계 원형 홍채영상에서의 특징 검출에 의한 홍채인식 연구)

  • Jeong, Dae-Sik;Park, Kang-Ryoung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.3
    • /
    • pp.48-60
    • /
    • 2007
  • In previous researches for iris feature extraction, they transform a original iris image into rectangular one by stretching and interpolation, which causes the distortion of iris patterns. Consequently, it reduce iris recognition accuracy. So we are propose the method that extracts iris feature by using polar coordinates without distortion of iris patterns. Our proposed method has three strengths compared with previous researches. First, we extract iris feature directly from polar coordinate circular iris image. Though it requires a little more processing time, there is no degradation of accuracy for iris recognition and we compares the recognition performance of polar coordinate to rectangular type using by Hamming Distance, Cosine Distance and Euclidean Distance. Second, in general, the center position of pupil is different from that of iris due to camera angle, head position and gaze direction of user. So, we propose the method of iris feature detection based on polar coordinate circular iris region, which uses pupil and iris position and radius at the same time. Third, we overcome override point from iris patterns by using polar coordinates circular method. each overlapped point would be extracted from the same position of iris region. To overcome such problem, we modify Gabor filter's size and frequency on first track in order to consider low frequency iris patterns caused by overlapped points. Experimental results showed that EER is 0.29%, d' is 5,9 and EER is 0.16%, d' is 6,4 in case of using conventional rectangular image and proposed method, respectively.