• Title/Summary/Keyword: Gabor features

Search Result 110, Processing Time 0.03 seconds

An Adaptive Face Recognition System Based on a Novel Incremental Kernel Nonparametric Discriminant Analysis

  • SOULA, Arbia;SAID, Salma BEN;KSANTINI, Riadh;LACHIRI, Zied
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.2129-2147
    • /
    • 2019
  • This paper introduces an adaptive face recognition method based on a Novel Incremental Kernel Nonparametric Discriminant Analysis (IKNDA) that is able to learn through time. More precisely, the IKNDA has the advantage of incrementally reducing data dimension, in a discriminative manner, as new samples are added asynchronously. Thus, it handles dynamic and large data in a better way. In order to perform face recognition effectively, we combine the Gabor features and the ordinal measures to extract the facial features that are coded across local parts, as visual primitives. The variegated ordinal measures are extraught from Gabor filtering responses. Then, the histogram of these primitives, across a variety of facial zones, is intermingled to procure a feature vector. This latter's dimension is slimmed down using PCA. Finally, the latter is treated as a facial vector input for the advanced IKNDA. A comparative evaluation of the IKNDA is performed for face recognition, besides, for other classification endeavors, in a decontextualized evaluation schemes. In such a scheme, we compare the IKNDA model to some relevant state-of-the-art incremental and batch discriminant models. Experimental results show that the IKNDA outperforms these discriminant models and is better tool to improve face recognition performance.

Image Forgery Detection Using Gabor Filter (가보 필터를 이용한 이미지 위조 검출 기법)

  • NININAHAZWE, Sheilha;Rhee, Kyung-Hyune
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.11a
    • /
    • pp.520-522
    • /
    • 2014
  • Due to the availability of easy-to-use and powerful image editing tools, the authentication of digital images cannot be taken for granted and it gives rise to non-intrusive forgery detection problem because all imaging devices do not embed watermark. Forgery detection plays an important role in this case. In this paper, an effective framework for passive-blind method for copy-move image forgery detection is proposed, based on Gabor filter which is robust to illumination, rotation invariant, robust to scale. For the detection, the suspicious image is selected and Gabor wavelet is applied from whole scale space and whole direction space. We will extract the mean and the standard deviation as the texture features and feature vectors. Finally, a distance is calculated between two textures feature vectors to determine the forgery, and the decision will be made based on that result.

Real-time Recognition System of Facial Expressions Using Principal Component of Gabor-wavelet Features (표정별 가버 웨이블릿 주성분특징을 이용한 실시간 표정 인식 시스템)

  • Yoon, Hyun-Sup;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.6
    • /
    • pp.821-827
    • /
    • 2009
  • Human emotion can be reflected by their facial expressions. So, it is one of good ways to understand people's emotions by recognizing their facial expressions. General recognition system of facial expressions had selected interesting points, and then only extracted features without analyzing physical meanings. They takes a long time to find interesting points, and it is hard to estimate accurate positions of these feature points. And in order to implement a recognition system of facial expressions on real-time embedded system, it is needed to simplify the algorithm and reduce the using resources. In this paper, we propose a real-time recognition algorithm of facial expressions that project the grid points on an expression space based on Gabor wavelet feature. Facial expression is simply described by feature vectors on the expression space, and is classified by an neural network with its resources dramatically reduced. The proposed system deals 5 expressions: anger, happiness, neutral, sadness, and surprise. In experiment, average execution time is 10.251 ms and recognition rate is measured as 87~93%.

A Multimodal Fusion Method Based on a Rotation Invariant Hierarchical Model for Finger-based Recognition

  • Zhong, Zhen;Gao, Wanlin;Wang, Minjuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.1
    • /
    • pp.131-146
    • /
    • 2021
  • Multimodal biometric-based recognition has been an active topic because of its higher convenience in recent years. Due to high user convenience of finger, finger-based personal identification has been widely used in practice. Hence, taking Finger-Print (FP), Finger-Vein (FV) and Finger-Knuckle-Print (FKP) as the ingredients of characteristic, their feature representation were helpful for improving the universality and reliability in identification. To usefully fuse the multimodal finger-features together, a new robust representation algorithm was proposed based on hierarchical model. Firstly, to obtain more robust features, the feature maps were obtained by Gabor magnitude feature coding and then described by Local Binary Pattern (LBP). Secondly, the LGBP-based feature maps were processed hierarchically in bottom-up mode by variable rectangle and circle granules, respectively. Finally, the intension of each granule was represented by Local-invariant Gray Features (LGFs) and called Hierarchical Local-Gabor-based Gray Invariant Features (HLGGIFs). Experiment results revealed that the proposed algorithm is capable of improving rotation variation of finger-pose, and achieving lower Equal Error Rate (EER) in our homemade database.

Robust Face Recognition based on Gabor Feature Vector illumination PCA Model (가버 특징 벡터 조명 PCA 모델 기반 강인한 얼굴 인식)

  • Seol, Tae-In;Kim, Sang-Hoon;Chung, Sun-Tae;Jo, Seong-Won
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.6
    • /
    • pp.67-76
    • /
    • 2008
  • Reliable face recognition under various illumination environments is essential for successful commercialization. Feature-based face recognition relies on a good choice of feature vectors. Gabor feature vectors are known to be more robust to variations of pose and illumination than any other feature vectors so that they are popularly adopted for face recognition. However, they are not completely independent of illuminations. In this paper, we propose an illumination-robust face recognition method based on the Gabor feature vector illumination PCA model. We first construct the Gabor feature vector illumination PCA model where Gator feature vector space is rendered to be decomposed into two orthogonal illumination subspace and face identity subspace. Since the Gabor feature vectors obtained by projection into the face identity subspace are separated from illumination, the face recognition utilizing them becomes more robust to illumination. Through experiments, it is shown that the proposed face recognition based on Gabor feature vector illumination PCA model performs more reliably under various illumination and Pose environments.

Feature-Point Extraction by Dynamic Linking Model bas Wavelets and Fuzzy C-Means Clustering Algorithm (Gabor 웨이브렛과 FCM 군집화 알고리즘에 기반한 동적 연결모형에 의한 얼굴표정에서 특징점 추출)

  • Sin, Yeong Suk
    • Korean Journal of Cognitive Science
    • /
    • v.14 no.1
    • /
    • pp.10-10
    • /
    • 2003
  • This paper extracts the edge of main components of face with Gabor wavelets transformation in facial expression images. FCM(Fuzzy C-Means) clustering algorithm then extracts the representative feature points of low dimensionality from the edge extracted in neutral face. The feature-points of the neutral face is used as a template to extract the feature-points of facial expression images. To match point to Point feature points on an expression face against each feature point on a neutral face, it consists of two steps using a dynamic linking model, which are called the coarse mapping and the fine mapping. This paper presents an automatic extraction of feature-points by dynamic linking model based on Gabor wavelets and fuzzy C-means(FCM) algorithm. The result of this study was applied to extract features automatically in facial expression recognition based on dimension[1].

The Robust Derivative Code for Object Recognition

  • Wang, Hainan;Zhang, Baochang;Zheng, Hong;Cao, Yao;Guo, Zhenhua;Qian, Chengshan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.272-287
    • /
    • 2017
  • This paper proposes new methods, named Derivative Code (DerivativeCode) and Derivative Code Pattern (DCP), for object recognition. The discriminative derivative code is used to capture the local relationship in the input image by concatenating binary results of the mathematical derivative value. Gabor based DerivativeCode is directly used to solve the palmprint recognition problem, which achieves a much better performance than the state-of-art results on the PolyU palmprint database. A new local pattern method, named Derivative Code Pattern (DCP), is further introduced to calculate the local pattern feature based on Dervativecode for object recognition. Similar to local binary pattern (LBP), DCP can be further combined with Gabor features and modeled by spatial histogram. To evaluate the performance of DCP and Gabor-DCP, we test them on the FERET and PolyU infrared face databases, and experimental results show that the proposed method achieves a better result than LBP and some state-of-the-arts.

Performance Improvement for Robust Eye Detection Algorithm under Environmental Changes (환경변화에 강인한 눈 검출 알고리즘 성능향상 연구)

  • Ha, Jin-gwan;Moon, Hyeon-joon
    • Journal of Digital Convergence
    • /
    • v.14 no.10
    • /
    • pp.271-276
    • /
    • 2016
  • In this paper, we propose robust face and eye detection algorithm under changing environmental condition such as lighting and pose variations. Generally, the eye detection process is performed followed by face detection and variations in pose and lighting affects the detection performance. Therefore, we have explored face detection based on Modified Census Transform algorithm. The eye has dominant features in face area and is sensitive to lighting condition and eye glasses, etc. To address these issues, we propose a robust eye detection method based on Gabor transformation and Features from Accelerated Segment Test algorithms. Proposed algorithm presents 27.4ms in detection speed with 98.4% correct detection rate, and 36.3ms face detection speed with 96.4% correct detection rate for eye detection performance.

Support Vector Machine Based Diagnostic System for Thyroid Cancer using Statistical Texture Features

  • Gopinath, B.;Shanthi, N.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.1
    • /
    • pp.97-102
    • /
    • 2013
  • Objective: The aim of this study was to develop an automated computer-aided diagnostic system for diagnosis of thyroid cancer pattern in fine needle aspiration cytology (FNAC) microscopic images with high degree of sensitivity and specificity using statistical texture features and a Support Vector Machine classifier (SVM). Materials and Methods: A training set of 40 benign and 40 malignant FNAC images and a testing set of 10 benign and 20 malignant FNAC images were used to perform the diagnosis of thyroid cancer. Initially, segmentation of region of interest (ROI) was performed by region-based morphology segmentation. The developed diagnostic system utilized statistical texture features derived from the segmented images using a Gabor filter bank at various wavelengths and angles. Finally, the SVM was used as a machine learning algorithm to identify benign and malignant states of thyroid nodules. Results: The SVMachieved a diagnostic accuracy of 96.7% with sensitivity and specificity of 95% and 100%, respectively, at a wavelength of 4 and an angle of 45. Conclusion: The results show that the diagnosis of thyroid cancer in FNAC images can be effectively performed using statistical texture information derived with Gabor filters in association with an SVM.

EFFICIENCY OF SPEECH FEATURES (음성 특징의 효율성)

  • 황규웅
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1995.06a
    • /
    • pp.225-227
    • /
    • 1995
  • This paper compared waveform, cepstrum, and spline wavelet features with nonlinear discriminant analysis. This measure shows efficiency of speech parametrization better than old linear separability criteria and can be used to measure the efficiency of each layer of certain system. Spline wavelet transform has larger gap among classes and cepstrum is clustered better than the spline wavelet feature. Both features do not have good property for classification and we will compare Gabor wavelet transform, Mel cepstrum, delta cepstrum, etc.

  • PDF