• Title/Summary/Keyword: Gabor feature

Search Result 127, Processing Time 0.024 seconds

Gabor Descriptors Extraction in the SURF Feature Point for Improvement Accuracy in Face Recognition (얼굴 인식의 정확도 향상을 위한 SURF 특징점에서의 Gabor 기술어 추출)

  • Lee, Jae-Yong;Kim, Ji-Eun;Oh, Seoung-Jun
    • Journal of Broadcast Engineering
    • /
    • v.17 no.5
    • /
    • pp.808-816
    • /
    • 2012
  • Face recognition has been actively studied and developed in various fields. In recent years, interest point extraction algorithms mainly used for object recognition were being applied to face recognition. The SURF(Speeded Up Robust Features) algorithm was used in this paper which was one of typical interest point extraction algorithms. Generally, the interest points extracted from human faces are less distinctive than the interest points extracted from objects due to the similar shapes of human faces. Thus, the accuracy of the face recognition using SURF tends to be low. In order to improve it, we propose a face recognition algorithm which performs interest point extraction by SURF and the Gabor wavelet transform to extract descriptors from the interest points. In the result, the proposed method shows around 23% better recognition accuracy than SURF-based conventional methods.

A Study on NPC Grouping of 3D Game using Gabor Characteristics (가버 특성을 이용한 3D 게임의 NPC 그룹핑에 관한 연구)

  • Park, Chang-Min
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.12
    • /
    • pp.2836-2842
    • /
    • 2010
  • An NPC grouping method is proposed for various 3D games depending on their characteristics. Immovable objects tend to have particular orientation features in their Gabor filtering results whereas the movable objects controlled by AI appearing as a human or an animal do not. First of all, We analyzed directional and frequency domain features in the NPC object and configured them as 24 Gabor filter banks. Then, 24-dimensional feature vectors according to the scale and direction of the filter are calculated. Each extracted vector represents the energy of a certain direction. This energy indicates the particular direction strength of the object texture. Thus, using this property, NPCs could be grouped as artificial objects and natural objects effectively and it draws the game more speed and strategic actions as a result.

An Adaptive Face Recognition System Based on a Novel Incremental Kernel Nonparametric Discriminant Analysis

  • SOULA, Arbia;SAID, Salma BEN;KSANTINI, Riadh;LACHIRI, Zied
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.2129-2147
    • /
    • 2019
  • This paper introduces an adaptive face recognition method based on a Novel Incremental Kernel Nonparametric Discriminant Analysis (IKNDA) that is able to learn through time. More precisely, the IKNDA has the advantage of incrementally reducing data dimension, in a discriminative manner, as new samples are added asynchronously. Thus, it handles dynamic and large data in a better way. In order to perform face recognition effectively, we combine the Gabor features and the ordinal measures to extract the facial features that are coded across local parts, as visual primitives. The variegated ordinal measures are extraught from Gabor filtering responses. Then, the histogram of these primitives, across a variety of facial zones, is intermingled to procure a feature vector. This latter's dimension is slimmed down using PCA. Finally, the latter is treated as a facial vector input for the advanced IKNDA. A comparative evaluation of the IKNDA is performed for face recognition, besides, for other classification endeavors, in a decontextualized evaluation schemes. In such a scheme, we compare the IKNDA model to some relevant state-of-the-art incremental and batch discriminant models. Experimental results show that the IKNDA outperforms these discriminant models and is better tool to improve face recognition performance.

A Study of Evaluation System for Facial Expression Recognition based on LDP (LDP 기반의 얼굴 표정 인식 평가 시스템의 설계 및 구현)

  • Lee, Tae Hwan;Cho, Young Tak;Ahn, Yong Hak;Chae, Ok Sam
    • Convergence Security Journal
    • /
    • v.14 no.7
    • /
    • pp.23-28
    • /
    • 2014
  • This study proposes the design and implementation of the system for a facial expression recognition system. LDP(Local Directional Pattern) feature computes the edge response in a different direction from a pixel with the relationship of neighbor pixels. It is necessary to be estimated that LDP code can represent facial features correctly under various conditions. In this respect, we build the system of facial expression recognition to test LDP performance quickly and the proposed evaluation system consists of six components. we experiment the recognition rate with local micro patterns (LDP, Gabor, LBP) in the proposed evaluation system.

Active Facial Tracking for Fatigue Detection (피로 검출을 위한 능동적 얼굴 추적)

  • Kim, Tae-Woo;Kang, Yong-Seok
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.2 no.3
    • /
    • pp.53-60
    • /
    • 2009
  • The vision-based driver fatigue detection is one of the most prospective commercial applications of facial expression recognition technology. The facial feature tracking is the primary technique issue in it. Current facial tracking technology faces three challenges: (1) detection failure of some or all of features due to a variety of lighting conditions and head motions; (2) multiple and non-rigid object tracking; and (3) features occlusion when the head is in oblique angles. In this paper, we propose a new active approach. First, the active IR sensor is used to robustly detect pupils under variable lighting conditions. The detected pupils are then used to predict the head motion. Furthermore, face movement is assumed to be locally smooth so that a facial feature can be tracked with a Kalman filter. The simultaneous use of the pupil constraint and the Kalman filtering greatly increases the prediction accuracy for each feature position. Feature detection is accomplished in the Gabor space with respect to the vicinity of predicted location. Local graphs consisting of identified features are extracted and used to capture the spatial relationship among detected features. Finally, a graph-based reliability propagation is proposed to tackle the occlusion problem and verify the tracking results. The experimental results show validity of our active approach to real-life facial tracking under variable lighting conditions, head orientations, and facial expressions.

  • PDF

Active Facial Tracking for Fatigue Detection (피로 검출을 위한 능동적 얼굴 추적)

  • 박호식;정연숙;손동주;나상동;배철수
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05b
    • /
    • pp.603-607
    • /
    • 2004
  • The vision-based driver fatigue detection is one of the most prospective commercial applications of facial expression recognition technology. The facial feature tracking is the primary technique issue in it. Current facial tracking technology faces three challenges: (1) detection failure of some or all of features due to a variety of lighting conditions and head motions; (2) multiple and non-rigid object tracking and (3) features occlusion when the head is in oblique angles. In this paper, we propose a new active approach. First, the active IR sensor is used to robustly detect pupils under variable lighting conditions. The detected pupils are then used to predict the head motion. Furthermore, face movement is assumed to be locally smooth so that a facial feature can be tracked with a Kalman filter. The simultaneous use of the pupil constraint and the Kalman filtering greatly increases the prediction accuracy for each feature position. Feature detection is accomplished in the Gabor space with respect to the vicinity of predicted location. Local graphs consisting of identified features are extracted and used to capture the spatial relationship among detected features. Finally, a graph-based reliability propagation is proposed to tackle the occlusion problem and verify the tracking results. The experimental results show validity of our active approach to real-life facial tracking under variable lighting conditions, head orientations, and facial expressions.

  • PDF

Personal Identification System Using Directional Distribution of Fingerprints (지문의 방향분포를 이용한 개인 인증 시스템)

  • Lee, Jung-Moon;Kim, Jin-Sung
    • Journal of Industrial Technology
    • /
    • v.24 no.A
    • /
    • pp.59-65
    • /
    • 2004
  • Personal identification using fingerprints needs much calculational effort. Generally, there are various methods for fingerprint-based identification. In this paper, an identification method is proposed which is based on direction distribution of fingerprint ridges. An 8-directional Gabor filter bank is used for extracting the feature vector from the given fingerprint. Then, it is compared with those of registered fingerprints for matching. This method is simple and fast to implement because it uses the information of ridge directions only. An experiment on 532 fingerprints from NIST database and some other source shows its usefulness.

  • PDF

Near-infrared face recognition by fusion of E-GV-LBP and FKNN

  • Li, Weisheng;Wang, Lidou
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.1
    • /
    • pp.208-223
    • /
    • 2015
  • To solve the problem of face recognition with complex changes and further improve the efficiency, a new near-infrared face recognition algorithm which fuses E-GV-LBP and FKNN algorithm is proposed. Firstly, it transforms near infrared face image by Gabor wavelet. Then, it extracts LBP coding feature that contains space, scale and direction information. Finally, this paper introduces an improved FKNN algorithm which is based on spatial domain. The proposed approach has brought face recognition more quickly and accurately. The experiment results show that the new algorithm has improved the recognition accuracy and computing time under the near-infrared light and other complex changes. In addition, this method can be used for face recognition under visible light as well.

Gait Recognition Based on GF-CNN and Metric Learning

  • Wen, Junqin
    • Journal of Information Processing Systems
    • /
    • v.16 no.5
    • /
    • pp.1105-1112
    • /
    • 2020
  • Gait recognition, as a promising biometric, can be used in video-based surveillance and other security systems. However, due to the complexity of leg movement and the difference of external sampling conditions, gait recognition still faces many problems to be addressed. In this paper, an improved convolutional neural network (CNN) based on Gabor filter is therefore proposed to achieve gait recognition. Firstly, a gait feature extraction layer based on Gabor filter is inserted into the traditional CNNs, which is used to extract gait features from gait silhouette images. Then, in the process of gait classification, using the output of CNN as input, we utilize metric learning techniques to calculate distance between two gaits and achieve gait classification by k-nearest neighbors classifiers. Finally, several experiments are conducted on two open-accessed gait datasets and demonstrate that our method reaches state-of-the-art performances in terms of correct recognition rate on the OULP and CASIA-B datasets.

An approach for improving the performance of the Content-Based Image Retrieval (CBIR)

  • Jeong, Inseong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.6_2
    • /
    • pp.665-672
    • /
    • 2012
  • Amid rapidly increasing imagery inputs and their volume in a remote sensing imagery database, Content-Based Image Retrieval (CBIR) is an effective tool to search for an image feature or image content of interest a user wants to retrieve. It seeks to capture salient features from a 'query' image, and then to locate other instances of image region having similar features elsewhere in the image database. For a CBIR approach that uses texture as a primary feature primitive, designing a texture descriptor to better represent image contents is a key to improve CBIR results. For this purpose, an extended feature vector combining the Gabor filter and co-occurrence histogram method is suggested and evaluated for quantitywise and qualitywise retrieval performance criterion. For the better CBIR performance, assessing similarity between high dimensional feature vectors is also a challenging issue. Therefore a number of distance metrics (i.e. L1 and L2 norm) is tried to measure closeness between two feature vectors, and its impact on retrieval result is analyzed. In this paper, experimental results are presented with several CBIR samples. The current results show that 1) the overall retrieval quantity and quality is improved by combining two types of feature vectors, 2) some feature is better retrieved by a specific feature vector, and 3) retrieval result quality (i.e. ranking of retrieved image tiles) is sensitive to an adopted similarity metric when the extended feature vector is employed.