• 제목/요약/키워드: Gabor Wavelets

검색결과 16건 처리시간 0.021초

의료자산보호에서 얼굴인식을 위한 가보 웨이블릿 분석 (Gabor Wavelet Analysis for Face Recognition in Medical Asset Protection)

  • 전인자;정경용;이영호
    • 한국콘텐츠학회논문지
    • /
    • 제11권11호
    • /
    • pp.10-18
    • /
    • 2011
  • 개인정보보호법의 시행은 의료기관에서 의료자산에 대한 보안이 중요시 되고 있으며 이를 위한 얼굴인식은 가장 흥미롭지만 다양한 문제점을 가지고 있는 요소 중의 하나이다. 얼굴인식은 얼굴 영상의 변화하는 요인인 포즈, 조명, 표정과 크기의 변화요소를 포함하고 있다. 이와 같은 변화 요인 중에서 빛의 위치와 방향의 변화요인이 가장 큰 어려움중의 하나이다. 이와 같은 단점을 극복하기 위하여 본 논문에서는 의료자산 보호를 위한 CCTV 관제에서 얼굴인식을 위하여 가보웨이블릿의 계수의 분석, 커널 선정, 특징점, 커널크기와 같은 요소를 분석하였다. 제안된 방법은 분석으로 구성되어있다. 첫 번째 분석은 이미지로부터 커널을 선정하기 위한 것이며, 두 번째 분석은 커널 크기에 대한 계수 분석이다. 마지막으로 입력 영상의 크기에 따른 가보커널 크기의 변화에 대한 측정이다. 실험을 통하여 도출된 계수를 이용하여 얼굴인식을 수행하였으며, 평균 97.3%라는 인식 결과를 도출하였다. 제안하는 방법을 개발하여 논리적 타당성과 유효성을 검증하기 위해 실험적인 적용을 시도하고자 한다. 따라서 얼굴인식에서 서비스의 만족도와 질을 향상시켰다.

국부잡음에 강인한 웨이블릿 기반의 홍채 인식 기법 (Robust iris recognition for local noise based on wavelet transforms)

  • 박종근;이철희
    • 대한전자공학회논문지SP
    • /
    • 제42권2호
    • /
    • pp.121-130
    • /
    • 2005
  • 본 논문에서는 웨이블릿 변환을 이용하여 흥채의 특징을 추출하는 기법에 대해 제안한다. 웨이블릿 변환은 수행 속도가 빠르며 신호의 에너지를 저주파 대역으로 잘 모아주는 우수한 국소화 특징을 갖고 있으며, 특히 저주파 대역을 효율적인 특징 벡터로 사용한 수 있다. 한편 인식에 사용하고자 하는 흥채 영역에 눈꺼풀, 눈썹, 반사광, 안경의 흠집 등으로 인한 잡음이 포함될 수 있다. 이러한 잡음은 그 자체로도 홍채 패턴을 크게 변형시키며, 웨이블릿, 가보 등의 필터 기반 특징 추출 알고리즘은 잡음을 전체 영역으로 확산시킨다. 즉 잡음은 흥채 인식 시스템의 성능을 저하시킨다. 이를 막기 위해 본 논문에서는 홍채 템플릿을 여러 개의 영역으로 분할하여 각 영역에 대해 웨이블릿 변환을 수행함으로써 잡음의 영향을 제한된 영역에 국한시킨다. 실험에서 웨이블릿 방법이 기존의 Gabor 변환을 이용한 특징 추출 방법과 비교하여 특징 추출 속도는 더 빠르면서 대등한 성능을 보여주는 것을 확인할 수 있으며 영역 분할로 인해 성능 개선이 되었다.

Statistical Extraction of Speech Features Using Independent Component Analysis and Its Application to Speaker Identification

  • Jang, Gil-Jin;Oh, Yung-Hwan
    • The Journal of the Acoustical Society of Korea
    • /
    • 제21권4E호
    • /
    • pp.156-163
    • /
    • 2002
  • We apply independent component analysis (ICA) for extracting an optimal basis to the problem of finding efficient features for representing speech signals of a given speaker The speech segments are assumed to be generated by a linear combination of the basis functions, thus the distribution of speech segments of a speaker is modeled by adapting the basis functions so that each source component is statistically independent. The learned basis functions are oriented and localized in both space and frequency, bearing a resemblance to Gabor wavelets. These features are speaker dependent characteristics and to assess their efficiency we performed speaker identification experiments and compared our results with the conventional Fourier-basis. Our results show that the proposed method is more efficient than the conventional Fourier-based features in that they can obtain a higher speaker identification rate.

가보웨이블릿 특징맵을 입력으로 한 CNN 기반 영상잡음제거기 (Image Denoiser Based on Gabor Wavelets and Convolutional Neural Network)

  • 권혁진;조남익
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2019년도 추계학술대회
    • /
    • pp.106-109
    • /
    • 2019
  • 최근 Convolutional Neural Network (CNN)에 영상이 아닌 비학습적 알고리즘으로부터 도출된 특징맵을 입력함으로써 영상처리 성능 및 계산자원 효율성 향상을 이룬 보고가 늘어나고 있다. 본 논문에서는 이러한 점을 바탕으로 가보웨이블릿 특징맵을 입력으로 하는 CNN 기반 영상잡음제거기를 제안하고 그 성능 및 특징을 고찰하였다. 즉 기존의 CNN 에서는 일반적인 영상을 입력하는 반면에 본 논문에서는 영상으로부터 추출한 웨이블릿 계수들을 입력하였고, 이를 통하여 기존의 방법에 비하여 성능을 유지하면서 계산량을 줄일 수 있는 가능성을 확인하였다.

  • PDF

Statistical Extraction of Speech Features Using Independent Component Analysis and Its Application to Speaker Identification

  • 장길진;오영환
    • 한국음향학회지
    • /
    • 제21권4호
    • /
    • pp.156-156
    • /
    • 2002
  • We apply independent component analysis (ICA) for extracting an optimal basis to the problem of finding efficient features for representing speech signals of a given speaker The speech segments are assumed to be generated by a linear combination of the basis functions, thus the distribution of speech segments of a speaker is modeled by adapting the basis functions so that each source component is statistically independent. The learned basis functions are oriented and localized in both space and frequency, bearing a resemblance to Gabor wavelets. These features are speaker dependent characteristics and to assess their efficiency we performed speaker identification experiments and compared our results with the conventional Fourier-basis. Our results show that the proposed method is more efficient than the conventional Fourier-based features in that they can obtain a higher speaker identification rate.

Modified Local Directional Pattern 영상을 이용한 얼굴인식 (Face Recognition using Modified Local Directional Pattern Image)

  • 김동주;이상헌;손명규
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제2권3호
    • /
    • pp.205-208
    • /
    • 2013
  • 일반적으로 이진패턴 변환은 조명 변화에 강인한 특성을 가지므로, 얼굴인식 및 표정인식 분야에 널리 사용되고 있다. 이에, 본 논문에서는 기존의 LDP(Local Directional Pattern)의 텍스처 성분을 개선한 MLDP(Modified LDP) 변환 영상에 2D-PCA(Two-Dimensional Principal Component Analysis) 알고리즘을 결합한 조명변화에 강인한 얼굴인식 방법에 대하여 제안한다. 기존의 LBP(Local Binary Pattern)나 LDP와 같은 이진패턴 변환들이 히스토그램 특징 추출을 위해 주로 사용되는 것과는 다르게, 본 논문에서 제안하는 방법은 MLDP 영상을 2D-PCA 특징추출을 위해 직접 사용한다는 특성을 갖는다. 제안 방법의 성능평가는 PCA(Principal Component Analysis), 2D-PCA 및 가버변환 영상과 LBP를 결합한 알고리즘을 사용하여, 다양한 조명변화 환경에서 구축된 Yale B 및 CMU-PIE 데이터베이스를 이용하여 수행되었다. 실험 결과, MLDP 영상과 2D-PCA를 사용한 제안 방법이 가장 우수한 인식 성능을 보임을 확인하였다.