• Title/Summary/Keyword: GaN films

Search Result 276, Processing Time 0.028 seconds

Interfacial disruption effect on multilayer-films/GaN : Comparative study of Pd/Ni and Ni/Pd films

  • 김종호;강희재;김차연;전용석;서재명
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.113-113
    • /
    • 2000
  • 직접천이형 wide band gap(3.4eV) 반도체중의 하나인 GaN를 청색 및 자외선 laser diode, 고출력 전자장비 등으로 응용하기 위해서는 낮은 접합저항을 갖는 Ohmic contact이 선행되어야 한다. 그러나 만족할만한 p-type GaN의 Ohmic contact은 아직 실현되고 있지 못하며, 이는 GaN와 접합 금속과의 구체적인 반응의 연구를 필요로 한다. 본 연구에서 앞서 Pt, Pt, Ni등의 late transition metal을 p-GaN에 접합시킨 결과 이들은 접합 당시 비교적 평탄하나 후열 처리과정에서 비교적 낮은 온도에서 기판과 열팽창계수의 차이로 인하여 평탄성을 잃어버리면서 barrier height가 증가한다는 사실을 확인하였다. 따라서 본 연구에서는 이러한 열적 불안정성을 극복하기 위하여 Ni과 Pd를 차례로 증착하고 가열하면서 interfacial reaction, film morphology, Fermi level의 움직임을 monchromatic XPS(x-ray photoelectron spectroscopy) 와 SAM(scanning Auger microscopy) 그리고 ex-situ AFM을 이용하여 밝히고자 하였다. 특히 후열처리에 의한 계면 반응에 수반되는 구성 금속원소 간의 합금현상과 금속 층의 평탄성이 밀접한 관계가 있다는 것을 확인하였다. 이러한 합금과정에서 나타나는 금속원소들의 중심 준위의 이동을 체계적으로 규명하기 위해서 Pd1-xNix와 Pd1-xGax 합금들의 표준시료를 arc melting method로 만들어 농도에 따른 금속원소들의 중심 준위의 이동을 측정하여, Pd/Ni/p-GaN 및 Ni/Pd/p-GaN 계에서 열처리 온도에 따른 interfacial reaction을 확인하였다. 그 결과 두 계가 상온에서 nitride 및 alloy를 형성하지 않고 고르게 증착되고, 열처리 온도를 40$0^{\circ}C$에서 $650^{\circ}C$까지 증가시킴에 따라 계면반응의 부산물인 metallic Ga은 증가하고 있으마 nitride는 여전히 형성되지 않는 것을 확인하였다. 증착당시 Ni이 계면에 있는 Pd/Ni/p-GaN의 경우에는 52$0^{\circ}C$까지의 열처리에 의하여 Ni과 Pd가 골고루 섞이고 그 평탄성도 유지되고 barier height의 변화도 없었다. 더 높은 $650^{\circ}C$ 가열에 의해서는 surface free energy가 작은 Ga의 활발한 편석 현상으로 인해 표면은 Ga이 풍부한 Pd-Ga의 합금층으로 덮이고, 동시에 작은 pinhole들이 발생하며 barrier height도 0.3eV 가량 증가하게 된다. 반면에 증착당시 Pd이 계면에 있는 Ni/Pd/p-GaN의 경우에는 40$0^{\circ}C$의 가열까지는 두 금속이 그들 계면에서부터 섞이나, 52$0^{\circ}C$의 가열에 의해 이미 barrier height가 0.2eV 가량 증가하기 시작하였다. 더 높은 $650^{\circ}C$가열에 의해서는 커다란 pinhole, 0.5eV 가량의 barrier height 증가, Pd clustering이 동시에 관찰되었다. 따라서 Ni과 Pd의 일함수는 물론 thermal expansion coefficient가 거의 같으며 surface free energy도 거의 일치한다는 점을 감안하면, 이렇게 뚜렷한 열적 안정성의 차이는 GaN와 contact metal과의 반응시작 온도(disruption onset temperature)의 차이에 기인함을 알 수 있었다. 즉 계면에서의 반응에 의해 편석되는 Ga에 의해 박막의 strain이 이완되면, pinhole 등의 박막결함이 줄어 들고, 이는 계면의 N의 out-diffusion을 방지하여 p-type GaN의 barrier height 증가를 막게 된다.

  • PDF

Growth and effect of thermal annealing for $AgGaS_2$ single crystal thin film by hot wall epitaxy (Hot wall epitaxy(HWE)법에 의한 $AgGaS_2$ 단결정 박막 성장과 열처리 효과)

  • Moon Jongdae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.1
    • /
    • pp.1-9
    • /
    • 2005
  • A stoichiometric mixture of evaporating materials for AgGaS₂ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, AgGaS₂ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (HWE) system. The source and substrate temperatures were 590℃ and 440℃, respectively. The temperature dependence of the energy band gap of the AgGaS₂ obtained from the absorption spectra was well described by the Varshni's relation, E/sub g/(T) = 2.7284 eV - (8.695×10/sup -4/ eV/K)T²/(T + 332 K). After the as-grown AgGaS₂ single crystal thin films was annealed in Ag-, S-, and Ga-atmospheres, the origin of point defects of AgGaS₂ single crystal thin films has been investigated by the photoluminescence (PL) at 10 K. The native defects of V/sub Ag/, V/sub s/, Ag/sub int/, and S/sub int/ obtained by PL measurements were classified as a donors or accepters type. And we concluded that the heat-treatment in the Ag-atmosphere converted AgGaS₂ single crystal thin films to an optical n-type. Also, we confirmed that Ga in AgGaS₂/GaAs crystal thin films did not form the native defects because Ga in AgGaS₂ single crystal thin films existed in the form of stable bonds.

GaN Thin Flims Grown by CVPE(Chloride Vapor Phase Epitaxy) Method (CVPE(Chloride Vapor Phase Epitaxy)법에 의한 GaN 박막성장 연구)

  • 오태효;박범진
    • Korean Journal of Crystallography
    • /
    • v.8 no.2
    • /
    • pp.81-88
    • /
    • 1997
  • We investigated the CVPE grown of GaN thin films on (0001) sapphire using the $GaCl_3$ and $NH_3$ as source gases. The growth temperatures are ranged 970 to $1040^{\circ}C$ with the various flow rate ratio of source gases. The nitridation treatment was performed using the $NH_3$ gas before the GaN deposition. The optimal growth conditions were determined to be; growth temperature of $1040^{\circ}C$, III/V flow rate ratio of 2, nitridation time of 3 min. The FWHM at the (0002) peak from the XRD analysis was shown to be 0.32 deg. for the sample grown under those conditions. The growth rate was about $40{\mu}m/hr$ at $1040^{\circ}C$.

  • PDF

Properties of Transparent Conducting Zinc Oxide Films Prepared by RF Sputtering (RF Sputter 방법으로 제조한 투명전도막 ZnO 특성)

  • Choe, Byung-Ho
    • Korean Journal of Materials Research
    • /
    • v.2 no.5
    • /
    • pp.360-365
    • /
    • 1992
  • Ga-doped polycrystalline ZnO films on glass substrates were prepared by sputtering the targets, which had been prepared by sintering discs consisting of ZnO powder and various amounts of G$a_2O_3$, to investigate the effects of gallium doping and sputtering conditions on electrical properties. Optimizing the RF power density, argon gas pressure and gallium content, transparent Ga-doped ZnO films with resistivity less than 1$0^{-3}$ohm-cm are obtained. Electron concentration of undoped and Ga-doped ZnO films are order of $10^{18}$, $10^{21}$/c$m^2$respectively. After heat treatment in air and $N_2atmosphere, $ the resistivity of Ga-doped ZnO films increases by about two orders of magnitude. The optical transmission is above 80% in the visible range and the optical band widens as the Ga content increases.

  • PDF

Study on Point Defect for $AgGaS_2$ Single Crystal Thin film Obtained by Photoluminescience Measurement Method (광발광 측정법에 의한 $AgGaS_2$ 단결정 박막의 점결함 연구)

  • Hong, Kwang-Joon;Kim, Koung-Suk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.2
    • /
    • pp.117-126
    • /
    • 2005
  • A stoichiometric mixture of evaporating materials for $AgGaS_2$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $AgGaS_2$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (HWE) system. The source and substrate temperatures were $590^{\circ}C\;and\;440^{\circ}C$, respectively The temperature dependence of the energy band gap of the $AgGaS_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=2.7284 eV-(8.695{\times}10^{-4}eV/K)T^2/T(T+332K)$. After the as-grown $AgGaS_2$, single crystal thin films was annealed in Ag-, S-, and Ga-atmospheres, the origin of point defects of $AgGaS_2$ single crystal thin films has been investigated by the photoluminescence(PL) at 10K. The native defects of $V_{Ag},\;V_s,\;Ag_{int},\;and\;S_{int}$, obtained by PL measurements were classified as a donors or acceptors type. And we concluded that the heat-treatment in the Ag-atmosphere converted $AgGaS_2$ single crystal thin films to an optical n-type. Also, we confirmed that Ga in $AgGaS_2$ crystal thin films did not form the native defects because Ga in $AgGaS_2$ single crystal thin films existed in the form of stable bonds.

The critical Mg doping on the blue light emission in p-type GaN thin films grown by metal-organic chemical vapor deposition

  • Kim, Keun-Joo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.09a
    • /
    • pp.52-59
    • /
    • 2001
  • The photoluminescence and the photo-current from p-type GaN films were investigated on both room- and low-temperatures for various Mg doping concentrations. At a low Mg doping level, there exists a photoluminescence center of the donor and the acceptor pair transition of the 3.28-eV band. This center is correlated with the defects for a shallow donor of the VGa and for an acceptor of MgGa. The acceptor level shows the binding energy of 0.2-0.25 eV, which was observed by the photon energy of the photo-current signal of 3.02-3.31 eV. At a high Mg doping level, there is a photoluminescence center of a deep donor and an acceptor pair transition of the 2.76-eV blue band. This center is attributed to the defect structures of MgGa-VN for the deep donor and MgGa for the acceptor. For low. doped samples, thermal annealing provides an additional photo-current signal for an unoccupied deep acceptor levels of 0.87-1.35 eV above valence band, indicating the p-type activation.

  • PDF

Optical Characterization on Undoped and Mg-doped GaN Implanted with Nd (Nd이 이온주입된 undoped와 Mg-doped GaN의 분광 특성 연구)

  • Song, Jong-Ho;Rhee, Seuk-Joo
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.6
    • /
    • pp.624-629
    • /
    • 2006
  • The energy transfer process between GaN and Nd ions as well as Mg codoping effect were investigated in Nd-implanted GaN films. Photoluminescence (PL) and PL excitation spectroscopies were performed on $^4F_{3/2}{\rightarrow}^4I_{9/2}$ Nd ionic level transition. At least three below bandgap traps were identified in the energy transfer process. The number of one particular trap, which is assigned to be an isoelectronic Nd trap, is increased with the Mg-codoping. The emission efficiency with above gap excitation, which emulates the electrical excitation, is further increased in GaN:Mg,Nd.

The Effect of Thermal Annealing for CuGaSe$_2$ Single Crystal Thin Film Grown by Hot Wall Epitaxy (Hot Wall Epitaxy(HWE)법으로 성장된 CuGaSe$_2$ 단결정 박막 성장의 열처리 효과)

  • Park, Chang-Sun;Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.352-356
    • /
    • 2003
  • A stoichiometric mixture of evaporating materials for $CuGaSe_2$ single crystal am films was prepared from horizontal electric furnace. Using extrapolation method of X-ray diffraction patterns for the polycrystal $CuGaSe_2$, it was found tetragonal structure whose lattice constant $a_0$ and $c_0$ were $5.615\;{\AA}\;and\;11.025\;{\AA}$, respectively. To obtain the single crystal thin films, $CuGaSe_2$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (HWE) system. The source and substrate temperatures were $610^{\circ}C$ and $450^{\circ}C$, respectively, The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $CuGaSe_2$ single crystal thin films measured with Hall effect by van der Pauw method are $9.24{\times}10^{16}\;cm^{-3}$ and $295\;cm^2/V{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of the $CuGaSe_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)\;:\;1.7998\;eV\;-\;(8.7489\;{\times}\;10^{-4}\;eV/K)T^2(T\;+\;335\;K)$. After the as-grown $CuGaSe_2$ single crystal thin films was annealed in Cu-, Se-, and Ga-atmospheres, the origin of point defects of $CuGaSe_2$ single crystal thin films has been investigated by the photoluminescence(PL) at 10 K. The native defects of $V_{CU}$, $V_{Se}$, $CU_{int}$, and $Se_{int}$, obtained by PL measurements were classified as a donors or accepters type. And we concluded that the heat-treatment in the Cu-atmosphere converted $CuGaSe_2$ single crystal thin films to an optical n-type. Also, we confirmed that Ga in $CuGaSe_2/GaAs$ did not form the native defects because Ga in $CuGaSe_2$ single crystal thin films existed in the form of stable bonds.

  • PDF

The Effect of Thermal Annealing and Growth of $CuGaSe_2$ Single Crystal Thin Film for Solar Cell Application (태양전지용 $CuGaSe_2$ 단결정 박막 성장과 열처리 효과)

  • Hong, Kwang-Joon;You, Sang-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.2
    • /
    • pp.59-70
    • /
    • 2003
  • A stoichiometric mixture of evaporating materials for $CuGaSe_2$ single crystal thin films was prepared from horizontal electric furnace. Using extrapolation method of X-ray diffraction patterns for the polycrystal $CuGaSe_2$, it was found tetragonal structure whose lattice constant $a_0$ and $c_0$ were $5.615{\AA}$ and $11.025{\AA}$, respectively. To obtain the single crystal thin films, $CuGaSe_2$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (HWE) system. The source and substrate temperatures were $610^{\circ}C$ and $450^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $CuGaSe_2$ single crystal thin films measured with Hall effect by van der Pauw method are $5.01\times10^{17}cm^{-3}$ and $245cm^2/V{\cdot}s$ at 293K. respectively. The temperature dependence of the energy band gap of the $CuGaSe_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g$(T)=1.7998 eV-($8.7489\times10^{-4}$ eV/K)$T^2$/(T+335K). After the as-grown $CuGaSe_2$ single crystal thin films was annealed in Cu-, Se-, and Ga-atmospheres, the origin of point defects of $CuGaSe_2$ single crystal thin films has been investigated by the photoluminescence(PL) at 10 K. The native defects of $V_{CU},\;V_{Se},\;Cu_{int}$ and $Se_{int}$ obtained by PL measurements were classified as a donors or acceptors type. And we concluded that the heat-treatment in the Cu-atmosphere converted $CuGaSe_2$ single crystal thin films to an optical n-type. Also, we confirmed that Ga in $CuGaSe_2$/GaAs did not form the native defects because Ga in $CuGaSe_2$ single crystal thin films existed in the form of stable bonds.

Characterization of ZnO Thin Films and Ga doped ZnO Thin Films Post Annealing for Transparent Conducting Oxide Application (투명전극 응용을 위한 ZnO박막과 Ga 도핑 된 ZnO박막의 성장 후 열처리에 따른 특성분석)

  • Jang, Jae-Ho;Bae, Hyo-Jun;Lee, Ji-Su;Jung, Kwang-Hyun;Choi, Hyon-Kwang;Jeon, Min-Hyon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.7
    • /
    • pp.567-571
    • /
    • 2009
  • Polycrystalline ZnO and Ga doped ZnO (GZO) films are deposited on glass substrate by RF magnetron sputtering at room temperature. The characteristics of ZnO and GZO films are investigated with X-ray diffraction measurement, UV-VIS-NIR spectrophotometer $(250{\sim}1200nm)$ and hall measurement. The post-growth thermal treatment of these films is carried out in N2 ambient at $500^{\circ}C$ for 30 min and an hour. ZnO and GZO films have different changing behavior of structural and optical properties by annealing. To use transparent conductive films for solar cell, films should have not only high transmittance but also good electrical property. Although as deposited GZO films have electrical properties than ZnO films, GZO films have not good transmittance properties. Consequently, we succeed that the high transmittance of GZO films is improved by annealing process.