• Title/Summary/Keyword: GaN film

Search Result 316, Processing Time 0.043 seconds

Enhancement of light reflectance and thermal stability in Ag-Mg alloy contacts on p-type GaN

  • Song, Yang-Hui;Son, Jun-Ho;Kim, Beom-Jun;Jeong, Gwan-Ho;Lee, Jong-Ram
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03a
    • /
    • pp.18-20
    • /
    • 2010
  • The mechanism for suppression of Ag agglomeration in Ag-Mg alloy ohmic contact to p-GaN is investigated. The Ag-Mg alloy ohmic contact shows low contact resistivity of $6.3\;{\times}\;10^{-5}\;{\Omega}cm^2$, high reflectance of 85.5% at 460 nm wavelength after annealing at $400^{\circ}C$ and better thermal stability than Ag contact The formation of Ga vacancies increase the net hole concentration, lowering the contact resistivity. Moreover, the oxidation of Mg atoms in Ag film increase the work function of Ag-Mg alloy contact and prevents Ag oxidation. The inhibition of oxygen diffusion by Mg oxide suppresses the Ag agglomeration, leading to enhance light reflectance and thermal stability.

  • PDF

Characteristics of Sn-doped β-Ga2O3 single crystals grown by EFG method (EFG 법으로 성장한 β-Ga2O3 단결정의 Sn 도핑 특성 연구)

  • Tae-Wan Je;Su-Bin Park;Hui-Yeon Jang;Su-Min Choi;Mi-Seon Park;Yeon-Suk Jang;Won-Jae Lee;Yun-Gon Moon;Jin-Ki Kang;Yun-Ji Shin;Si-Yong Bae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.2
    • /
    • pp.83-90
    • /
    • 2023
  • The β-Ga2O3 has the most thermodynamically stable phase, a wide band gap of 4.8~4.9 eV and a high dielectric breakdown voltage of 8MV/cm. Due to such excellent electrical characteristics, this material as a power device material has been attracted much attention. Furthermore, the β-Ga2O3 has easy liquid phase growth method unlike materials such as SiC and GaN. However, since the grown pure β-Ga2O3 single crystal requires the intentionally controlled doping due to a low conductivity to be applied to a power device, the research on doping in β-Ga2O3 single crystal is definitely important. In this study, various source powders of un-doped, Sn 0.05 mol%, Sn 0.1 mol%, Sn 1.5 mol%, Sn 2 mol%, Sn 3 mol%-doped Ga2O3 were prepared by adding different mole ratios of SnO2 powder to Ga2O3 powder, and β-Ga2O3 single crystals were grown by using an edge-defined Film-fed Growth (EFG) method. The crystal direction, crystal quality, optical, and electrical properties of the grown β-Ga2O3 single crystal were analyzed according to the Sn dopant content, and the property variation of β-Ga2O3 single crystal according to the Sn doping were extensively investigated.

Solution-Processed Indium-Gallium Oxide Thin-Film Transistors for Power Electronic Applications (전력반도체 응용을 위한 용액 공정 인듐-갈륨 산화물 반도체 박막 트랜지스터의 성능과 안정성 향상 연구)

  • Se-Hyun Kim;Jeong Min Lee;Daniel Kofi Azati;Min-Kyu Kim;Yujin Jung;Kang-Jun Baeg
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.4
    • /
    • pp.400-406
    • /
    • 2024
  • Next-generation wide-bandgap semiconductors such as SiC, GaN, and Ga2O3 are being considered as potential replacements for current silicon-based power devices due to their high mobility, larger size, and production of high-quality wafers at a moderate cost. In this study, we investigate the gradual modulation of chemical composition in multi-stacked metal oxide semiconductor thin films to enhance the performance and bias stability of thin-film transistors (TFTs). It demonstrates that adjusting the Ga ratio in the indium gallium oxide (IGO) semiconductor allows for precise control over the threshold voltage and enhances device stability. Moreover, employing multiple deposition techniques addresses the inherent limitations of solution-processed amorphous oxide semiconductor TFTs by mitigating porosity induced by solvent evaporation. It is anticipated that solution-processed indium gallium oxide (IGO) semiconductors, with a Ga ratio exceeding 50%, can be utilized in the production of oxide semiconductors with wide band gaps. These materials hold promise for power electronic applications necessitating high voltage and current capabilities.

The Characteristics of Al Thin Films on Ar Plasma Surface Treatment (Al 박막의 Ar 플라즈마 표면처리에 따른 특성)

  • Park, Sung-Hyun;Ji, Seung-Han;Jeon, Seok-Hwan;Chu, Soon-Nam;Lee, Sang-Hoon;Lee, Neung-Hun
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1333-1334
    • /
    • 2007
  • Al thin film was the most popular electrode in semiconductor and flat panel display world, because of its electrical conductivity, selectivity and easy to apply to thin film. However, Al thin films were not good to use on the bottom electrode about the crystalline growth of inorganic compound materials such as ZnO, AlN and GaN, because of its surface roughness and melting points. In this paper, we investigated Ar plasma surface treatment of Al thin film to enhance the surface roughness and electrical conductivity using the reactive ion etching system. Several process conditions such as RF power, working pressure and process time were controlled. In results, the surface roughness showed $15.53\;{\AA}$ when RF power was 100 W, working pressure was 50 mTorr and process time was 10 min. Also, we tried to deposit ZnO thin films on the each Al thin films, the upper conditions showed the best crystalline characteristics by x-ray diffraction.

  • PDF

Development of High Efficiency CIGS Thin Film Solar Cells by co-evaporation process (동시진공증발법을 이용한 고효율 CIGS 박막 태양전지 개발)

  • Yun, Jae-Ho;Ahn, Se-Jin;Ahn, Byung-Tae;Pak, Hi-Sun;Yoon, Kyung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.23-23
    • /
    • 2009
  • CIGS 박막 태양전지는 제조단가가 낮고 박막 태양전지 중에서 변환효율이 가장 높아 발전 가능성이 큰 태양전지로 인식되고 있다. 이미 일본, 독일, 미국을 비롯한 선진국에서는 30-50 MW 급의 양산 라인이 구축되고 있어 2010년 이후에는 본격적인 상용화가 진행될 것으로 보인다. CIGS 광흡수층은 진공증발, 셀렌화, 나노입자, 전기도금등 다양한 방식으로 제조가 가능한데 이 중에서도 동시진공증발공정은 고효율 CIGS 박막 태양전지 제조에 적합하다. 본 연구에서는 동시진공증발법을 이용하여 CIGS 박막을 증착하였으며 소다회유리/Mo/CIGS/CdS/i-ZnO/n-ZnO/Al/AR 구조의 태양전지를 제조하였다. 기판온도 모니터링을 통한 Cu 이차상 조절 기술을 이용하여 결정립이 매우 큰 CIGS 박막을 증착하였으며 Ga/(In+Ga) 조성비의 조절을 통하여 밴드갭 에너지를 최적화하였다. 또한 QCM 장치를 활용하여 용액 속에서 성장되는 CdS 박막의 두께와 특성을 조절하였다. 이러한 공정최적화를 통하여 개방전압 0.65 V, 단락전류밀도 38.8 $mA/cm^2$, 충실도 0.74 그리고 변환효율 18.8% 의 CIGS 박막 태양전지를 얻었다.

  • PDF

Alanysis of the Optical Properties of p-type ZnO Thin Films Doped by P based on Ampouele-tube Method (Ampoule-tube 법으로 Phosphorus를 도핑한 P형 ZnO 박막의 광학적 특성 분석)

  • Yoo, In-Sung;Oh, Sang-Hyun;So, Soon-Jin;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.145-146
    • /
    • 2006
  • The most Important research topic in the development of ZnO LED and LD is the production of p-type ZnO thin film that has minimal stress with outstanding stoichiometric ratio. In this study, Phosphorus diffused into the undoped ZnO thin films using the ampoule-tube method for the production of p-type znO thin films. The undoped ZnO thin films were deposited by RF magnetron sputtering system on $GaAs_{0.6}P_{0.4}$/GaP and Si wafers. 4N Phosphorus (P) was diffused into the undoped ZnO thin films in ampoule-tube which was performed and $630^{\circ}C$ during 3hr. We found the diffusion condition of the conductive ZnO films which had p-type properties with the highest mobility of above 532 $cm^2$/Vs compared with other studies PL spectra measured at 10K for the purpose of analyzing optical properties of p-type ZnO thin film showed strong PL intensity in the UV emission band around 365nm ~ 415nm and 365nm ~ 385nm.

  • PDF

Characterization of epitaxial layers on beta-gallium oxide single crystals grown by EFG method as a function of different crystal faces and off-angle (EFG 법으로 성장시킨 β-Ga2O3 단결정의 다양한 결정면, off-angle에 따른 epitaxial layer의 특성 분석)

  • Min-Ji Chae;Sun-Yeong Seo;Hui-Yeon Jang;So-Min Shin;Dae-Uk Kim;Yun-Jin Kim;Mi-Seon Park;Gwang-Hee Jung;Jin-Ki Kang;Hae-Yong Lee;Won-Jae Lee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.4
    • /
    • pp.109-116
    • /
    • 2024
  • β-Ga2O3 is a representative ultra-wide bandgap (UWBG) semiconductor that has attracted much attention for power device applications due to its wide-bandgap of 4.9 eV and high-breakdown voltage of 8 MV/cm. In addition, because solution growth is possible, it has advantages such as fast growth rate and lower production cost compared to SiC and GaN [1-2]. In this study, we have successfully grown Si-doped 10 mm thick Si-doped β-Ga2O3 single crystals by the EFG (Edge-defined Film-fed Growth) method. The growth direction and growth principal plane were set to [010] / (010), respectively, and the growth speed was 7~20 mm/h. The as-grown β-Ga2O3 single crystal was cut into various crystal planes (001, 100, ${\bar{2}}01$) and off-angles (1o, 3o, 4o), and then surface processed. After processed, the homoepitaxial layer was grown on the epi-ready substrate using the HVPE (Halide vapor phase epitaxy) method. The processed samples and the epi-layer grown samples were analyzed by XRD, AFM, OM, and Etching to compare the surface properties according to the crystal plane and off-angle.

Photocurrent Study on the Splitting of the Valence Band and Growth of $AgInS_2$GaAs Single Crystal Thin Film by Hot Wall Epitaxy (Hot Wall Epitaxy(HWE)법에 의한 $AgInS_2$단결성 박막의 성장과 가전자대 갈라짐에대한 광전류 연구)

  • 홍광준
    • Korean Journal of Crystallography
    • /
    • v.12 no.4
    • /
    • pp.197-206
    • /
    • 2001
  • A stoichiometric mixture of evaporating materials for AgInS₂ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films. AgInS₂ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy(HWE)system. The source and substrate temperatures were 680℃ and 410℃, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction(DCXD). The carrier density and mobility of AgInS₂ single crystal thin film mea-sured from Hall effect by van der Pauw method are 9.35×10/sup 16/㎤ and 294㎠/V·s at 293K respectively. The temperature dependence of the energy band gap of the AgInS₂ obtained from the absorption spectra was well described by the Varshni's relation , E/sub g/(T)=2.1365eV-(9.89×10/sup-3/eV/K/)T²(T+2930K). The crystal field and the spin-orbit splitting energies for the valence band of the AgInS₂ have been estimated to be 0.1541eV and 0.0129 eV, respectively, by means of the photocur-rent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the Δso definitely exists in the Γ/sub 5/ states of the valence band of the AgInS₂ /GaAs epilayer. The three photo-current peaks ovserved at 10K are ascribed to the A₁-, B-₁and C₁-exction peaks for n=1.

  • PDF

Synthesis and Luminous Properties of Thin Film Phosphors (박막형 형광체 합성 및 발광 특성)

  • 김영진;정승묵;정영호;송국현;박광자
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 1999.10a
    • /
    • pp.51-52
    • /
    • 1999
  • 각기 녹색, 적색의 발광특성플 갖는 $ZnGa_20_4:Mn,{\;}CaTi0_3:Pr$을 rf 마그네트론 스퍼터링법으로 박막을 제조하였다. 박막증착변수가 성장특성 및 발광특성에 미치는 영향을 분석한 결과, 산소분압 및 기판온도조건에 따라서 결정화 및 발광특성이 크게 달라짐을 확인할수 있었다. 열처리후에는 진공분위기보다는 $N_2$가스분위기에서 열처리를 한 시편이 발광특성이 우수하 게 나타났으며, 기판의 종류에 따라서 박막의 성장기구와 발광특성이 다르며, 특히 결정질의 기판이 형광체 박막 합성에 적합함을 알 수 있었다.

  • PDF