• 제목/요약/키워드: GaN etching

검색결과 134건 처리시간 0.034초

자화 유도 결합형 $CH_4/H_2/Ar$ 플라즈마를 이용한 GaN 건식 식각 특성 (Dry Etching Characteristics of GaN using a Magnetized Inductively Coupled $CH_4/H_2/Ar$ Plassma)

  • 김문영;심종경;태흥식;이호준;이용현;이정희;백영식
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제49권4호
    • /
    • pp.203-209
    • /
    • 2000
  • This paper proposes the improvement of the etch rate of GaN using a magnetized inductively coupled $CH_4/H_2/Ar$plasma. The gradient magnetic field with the axial direction is investigated using Gauss-meter and the ion current density is measured using double Langmuir probe. The applied magnetic field changes the ion current density profile in the radial direction, resulting in producing the higher density in the outer region than in the center. GaN dry etching process is carried out based on the measurements of the ion current density. The each rate of 2000 /min is achieved with $CH_4/H_2/Ar$ chemistries at 800 W input power, 250W rf bias power, 10 mTorr pressure and 100 gauss magnetic field.

  • PDF

GaN epitaxy 층의 식각특성에 미치는 공정변수의 영향 (Parametric study of inductively coupled plasma etching of GaN epitaxy layer)

  • 최병수;박해리;조현
    • 한국결정성장학회지
    • /
    • 제26권4호
    • /
    • pp.145-149
    • /
    • 2016
  • 플라즈마 조성, ICP source power, rf chuck power 등의 공정변수가 GaN epitaxy층의 식각특성에 미치는 영향을 조사하였다. $GaF_x$ 화합물 보다 더 높은 휘발성을 가지는 $GaCl_x$ 식각 생성물 형성이 가능한 $Cl_2/Ar$ 플라즈마가 $SF_6/Ar$ 플라즈마보다 더 높은 식각속도를 나타내었다. 또한, $Cl_2/Ar$ 플라즈마에서 Ar 비중이 증가함에 따라 물리적 식각 기구 활성화로 인해 식각 이방성이 향상됨을 확인하였다. 두 가지 플라즈마 조성 모두에서 ICP source power와 rf chuck power가 증가함에 따라 식각속도가 지속적으로 증가함을 확인하였고, $13Cl_2/2Ar$, 750W ICP power, 400 W rf chuck power, 10 mTorr 조건에서 최고 251.9 nm/min의 식각속도를 확보하였다.

Growth and Characteristics of Near-UV LED Structures on Wet-etched Patterned Sapphire Substrate

  • Cheong, Hung-Seob;Hong, Chang-Hee
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제6권3호
    • /
    • pp.199-205
    • /
    • 2006
  • Patterned sapphire substrates (PSS) were fabricated by a simple wet etching process with $SiO_2$ stripe masks and a mixed solution of $H_2SO_4$ and $H_3PO_4$. GaN layers were epitaxially grown on the PSS under the optimized 2-step growth condition of metalorganic vapor deposition. During the 1st growth step, GaN layers with triangular cross sections were grown on the selected area of the surface of the PSS, and in the 2nd growth step, the GaN layers were laterally grown and coalesced with neighboring GaN layers. The density of threading dislocations on the surface of the coalesced GaN layer was $2{\sim}4\;{\times}\;10^7\;cm^{-2}$ over the entire region. The epitaxial structure of near-UV light emitting diode (LED) was grown over the GaN layers on the PSS. The internal quantum efficiency and the extraction efficiency of the LED structure grown on the PSS were remarkably increased when compared to the conventional LED structure grown on the flat sapphire substrate. The reduction in TD density and the decrease in the number of times of total internal reflections of the light flux are mainly attributed due to high level of scattering on the PSS.

GaN 소자의 Schottky특성 향상에 관한 연구 (Improvement of Schottky Characteristic for GaN Devices)

  • 이복형;홍주연;이문교;윤용순;유순재;박성주;이진구
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 추계종합학술대회 논문집
    • /
    • pp.330-333
    • /
    • 1999
  • A Schottky characteristic is one of the important properties to determine the performance of GaN electronic devices. In this paper, we have studied how to improve the property after n$^{+}$ layer etching by ICP(Induced Coupled Plasma)-RIE(Reactive ion Etching). We have tried $N_2$radiation, annealing after $N_2$radiation, and annealing in $N_2$environment. We have found that a simple annealing method in $N_2$environment is enough to improve the Schottky characteristic for electronic device-Quality application.n.

  • PDF

Efficiency Improvement in InGaN-Based Solar Cells by Indium Tin Oxide Nano Dots Covered with ITO Films

  • Seo, Dong-Ju;Choi, Sang-Bae;Kang, Chang-Mo;Seo, Tae Hoon;Suh, Eun-Kyung;Lee, Dong-Seon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.345-346
    • /
    • 2013
  • InGaN material is being studied increasingly as a prospective material for solar cells. One of the merits for solar cell applications is that the band gap energy can be engineered from 0.7 eV for InN to 3.4 eV for GaN by varying of indium composition, which covers almost of solar spectrum from UV to IR. It is essential for better cell efficiency to improve not only the crystalline quality of the epitaxial layers but also fabrication of the solar cells. Fabrication includes transparent top electrodes and surface texturing which will improve the carrier extraction. Surface texturing is one of the most employed methods to enhance the extraction efficiency in LED fabrication and can be formed on a p-GaN surface, on an N-face of GaN, and even on an indium tin oxide (ITO) layer. Surface texturing method has also been adopted in InGaN-based solar cells and proved to enhance the efficiency. Since the texturing by direct etching of p-GaN, however, was known to induce the damage and result in degraded electrical properties, texturing has been studied widely on ITO layers. However, it is important to optimize the ITO thickness in Solar Cells applications since the reflectance is fluctuated by ITO thickness variation resulting in reduced light extraction at target wavelength. ITO texturing made by wet etching or dry etching was also revealed to increased series resistance in ITO film. In this work, we report a new way of texturing by deposition of thickness-optimized ITO films on ITO nano dots, which can further reduce the reflectance as well as electrical degradation originated from the ITO etching process.

  • PDF

$BCI_3/H_2/Ar$ 유도결합 플라즈마를 이용한 GaN의 건식 식각에 관한 연구 (Reactive Ion Etching of GaN Using $BCI_3/H_2/Ar$ Inductively Coupled Plasma)

  • 김성대;정석용;이병택;허증수
    • 한국재료학회지
    • /
    • 제10권3호
    • /
    • pp.179-183
    • /
    • 2000
  • $BCI_3/H_2/Ar$ ICP(Inductively Coupled Plasma)를 이용한 GaN이 건식식각에 있어서 공정변수들이 식각 특성에 미치는 영향을 분석하고 적정조건을 도출하였다. 연구 결과 식각속도와 측벽수직도 공히 ICP 전력, bias 전압과 $BCI_3$ 조성의 증가, 공정압력의 감소에 의해 현저히 증가하며, 온도의 증가에 따라 다소간 증가하였고, 온도의 증가에 따라 다소간 증가하였고, $BCI_3$조성이 가장 큰 영향을 미쳤다. 표면거칠기는 bias 전압 증가에 의해 크게 향상, $BCI_3$ 조성의 감소에 따라 향상되었으며 다른 변수는 큰 영향을 미치지 않았다. 결과적으로 ICP 전력 900W, bias 전압 400V, $BCI_3$ 조성 60%, 공정압력 4mTorr의 조건에서 175nm/min 정도의 $CI_2$ 사용 시와 유사한 높은 식각속도와 평탄한 표면이 얻어졌다. Bias 전압이 낮은 경우 식각 후 시료 표면에 $GaC_x$로 추정되는 식각부산물이 관찰되었다.

  • PDF

Dewetting된 Pt Islands를 Etch Mask로 사용한 GaN 나노구조 제작 (Fabrication of Nanostructures by Dry Etching Using Dewetted Pt Islands as Etch-masks)

  • 김택승;이지면
    • 한국재료학회지
    • /
    • 제16권3호
    • /
    • pp.151-156
    • /
    • 2006
  • A method for fabrication of nano-scale GaN structure by inductively coupled plasma etching is proposed, exploiting a thermal dewetting of Pt thin film as an etch mask. The nano-scale Pt metal islands were formed by the dewetting of 2-dimensional film on $SiO_2$ dielectric materials during rapid thermal annealing process. For the case of 30 nm thick Pt films, pattern formation and dewetting was initiated at temperatures greater $600^{\circ}C$. Controlling the annealing temperature and time as well as the thickness of the Pt metal film affected the size and density of Pt islands. The activation energy for the formation of Pt metal island was calculated to be 23.2 KJ/mole. The islands show good resistance to dry etching by a $CF_4$ based plasma for dielectric etching indicating that the metal islands produced by dewetting are suitable for use as an etch mask in the fabrication of nano-scale structures.

InGan/GaN 다중양자우물구조 위에 제작되어진 산화된 GaN 나노구멍 (Formation of Anodized GaN Nanopores on InGaN/GaN Multi-quantum Well Structures)

  • 최재호;김근주;정미;우덕하
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 추계학술대회 논문집 Vol.19
    • /
    • pp.315-316
    • /
    • 2006
  • We fabricated GaN nanopores m the etching process of anodic oxidation of aluminum. The aluminum was deposited by using E-beam evaporator on p-type GaN. After the aluminum was anodized GaN structure was exposed to the electric field with the oxidat species. The fabricated nanopore structure provides the enhanced intensity of light emission at the wavelengths 470 nm. We investigated the structure of the GaN nanopores from FE-SEM and EDS measurements.

  • PDF