• Title/Summary/Keyword: GaN bulk substrate

Search Result 14, Processing Time 0.028 seconds

Effect of annealing temperature on the optical properties of a bulk GaN substrate

  • Hee Ae Lee;Joo Hyung Lee;Seung Hoon Lee;;Seong Kuk Lee;Nuri Oh;Won Il Park
    • Journal of Ceramic Processing Research
    • /
    • v.21 no.5
    • /
    • pp.609-614
    • /
    • 2020
  • Variation of optical properties in a bulk GaN substrate have experimentally investigated with respect to different annealing conditions of 700 - 1,000 ℃. As-annealed GaN was characterized by scanning electron microscopy, photoluminescence, and Raman spectroscopy. The experimental results demonstrated that the crystallinity and internal residual compressive stress of GaN are most effectively improved when heat-treated at 900 oC for three hours. The optical characteristics were also improved by enhancing the quality of the GaN substrate by decreasing both the defect density and the residual stress. It was also confirmed that the effect of the heat treatment was excellent given that impurities were effectively removed by this process.

Controlling of the heterogeniously growing GaN polycrystals using a quartz ring in the edge during the HVPE-GaN bulk growth

  • Park, Jae Hwa;Lee, Hee Ae;Park, Cheol Woo;Kang, Hyo Sang;Lee, Joo Hyung;In, Jun-Hyeong;Lee, Seong Kuk;Shim, Kwang Bo
    • Journal of Ceramic Processing Research
    • /
    • v.19 no.5
    • /
    • pp.439-443
    • /
    • 2018
  • The outstanding characteristics of high quality GaN single crystal substrates make it possible to apply the manufacture of high brightness light emitting diodes and power devices. However, it is very difficult to obtain high quality GaN substrate because the process conditions are hard to control. In order to effectively control the formation of GaN polycrystals during the bulk GaN single crystal growth by the HVPE (hydride vapor phase epitaxy) method, a quartz ring was introduced in the edge of substrate. A variety of evaluating method such as high resolution X-ray diffraction, Raman spectroscopy and photoluminescence was used in order to measure the effectiveness of the quartz ring. A secondary ion mass spectroscopy was also used for evaluating the variations of impurity concentration in the resulting GaN single crystal. Through the detailed investigations, we could confirm that the introduction of a quartz ring during the GaN single crystal growth process using HVPE is a very effective strategy to obtain a high quality GaN single crystal.

Properties of HVPE prepared GaN substrates (HVPE법으로 제작한 GaN 기판의 특성)

  • 김선태;문동찬
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.67-70
    • /
    • 1998
  • In this work, the freestanding GaN single crystalline substrates without cracks were grown by hydride vapor phase epitaxy (HVPE). The GaN substrates, having a current maximum size of 350 $\mu\textrm{m}$-thickness and 10${\times}$10 $\textrm{mm}^2$ area, were obtained by HVPE growth GaN on sapphire substrate and subsequent mechanical removal of the sapphire substrate. A lattice constant of c$\_$0/=5.18486 ${\AA}$ and a FWHM of DCXRD was 650 arcsec for the single crystalline freestanding GaN substrate. The low temperature PL spectrum consist of excitonic emission and deep donor to acceptor pair recombination at 1.8 eV. The Raman E$_2$ (high) mode frequency was 567 cm$\^$-1/ which was the same as that of strain free bulk single crystals. The Hall mobility and carrier concentration was 283 $\textrm{cm}^2$/V$.$sec and 1.1${\times}$10$\^$18/ cm$\^$-3/, respectively. The freestanding and crack-free GaN single crystalline substrate suitable for the homoepitaxial growth of GaN, and the HVPE method are promising approaches for the preparation of large area, crack-free GaN substrates.

  • PDF

Fabrication and characterization of GaN substrate by HVPE (HVPE법으로 성장시킨 GaN substrate 제작과 특성 평가)

  • Oh, Dong-Keun;Choi, Bong-Geun;Bang, Sin-Young;Eun, Jong-Won;Chung, Jun-Ho;Lee, Seong-Kuk;Chung, Jin-Hyun;Shim, Kwang-Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.4
    • /
    • pp.164-167
    • /
    • 2010
  • Bulk GaN single crystal with 1.5 mm thickness was successfully grown by hydride vapor phase epitaxy (HVPE) technique. Free-standing GaN substrates of $10{\times}10,\;15{\times}15$ mm size were fabricate after lift-off of sapphire substrate and their optical properties were characterized properties for device applications. X-ray diffraction patterns showed (002) and (004) peak, and the FWHM of the X-ray rocking curve (XRC) measurement in (002) was 98 arcsec. A sharp photoluminescence spectrum at 363 nm was observed and defect spectrum at visible range was not detected. The hexagonal-shaped etch-pits are formed on the GaN surface in $200^{\circ}C\;H_3PO_4$ at 5 minutes. The defect density calculated from observed etch-pits on surface was around $5{\times}10^6/cm^2$. This indicates that the fabricated GaN substrates can be used for applications in the field of optodevice, and high power electronics.

Optically Pumped Stimulated Emission from Column-III Nitride Semiconductors. (III족 질화물반도체의 광여기 유도방출)

  • 김선태;문동찬
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.11a
    • /
    • pp.50-53
    • /
    • 1994
  • In this study. we report the properties of optically pumped stimulated emission at room temperature (RT) from column-III nitride semiconductors of GaN, GaInN, AlGaN/GaN double hetero-structure (DH) and AlGaN/GaInN DH which grown by low pressure metal-organic vapor phase epitaxy on sapphire substrate using an AIN buffer-layer. The peak wavelength of the stimulated emission at RT from AlGaN/GaN DH is 370nm and the threshold of excitation pumping power density (P$\_$th/) is about 89㎾/$\textrm{cm}^2$, and they from AlGaN/GaInN DH are 403nm and 130㎾/$\textrm{cm}^2$, respectively. The P$\_$th/ of AlGaN/GaN and AlGaN/GaInN DHs are lower than the bulk materials due to optical confinement within the active layers of GaN and GaInN. The optical gain and the polarization of stimulated emission characteristics are presented in this article.

Properties of Freestanding GaN Prepared by HVPE Using a Sapphire as Substrate (사파이어를 기판으로 이용하여 HVPE법으로 제작한 Freestanding GaN의 특성)

  • Lee, Yeong-Ju;Kim, Seon-Tae
    • Korean Journal of Materials Research
    • /
    • v.8 no.7
    • /
    • pp.591-595
    • /
    • 1998
  • In this work, the freestanding GaN single crystalline substrates without cracks were grown by hydride vapor phase epitaxy (HVPE) and its some properties were investigated. The GaN substrate, having a current maximum size of 350 $\mu\textrm{m}$-thickness and 100$\textrm{mm}^2$ area, were obtained by HVPE growth of thick film GaN on sapphire substrate and subsequent mechanical removal of the sapphire substrate. A lattice constant of $C_o$= 5.18486 $\AA$ and a FWHM of DCXRD was 650 arcsec for the single crystalline GaN substrate. The low temperature PL spectrum consist of three excitonic emission and a deep D- A pair recombination at 1.8eV. The Raman E, (high) mode frequency was 567$cm^{-1}$ which was the same as that of strain free bulk single crystals. The Hall mobility and carrier concentration was 283$cm^3$<\ulcornerTEX>/ V.sand 1.1$\times$$10^{18}cm^{-3}$, respectively.

  • PDF

Technical Trends in Vertical GaN Power Devices for Electric Vehicle Application (전기차 응용을 위한 수직형 GaN 전력반도체 기술 동향)

  • H.S. Lee;S.B. Bae
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.1
    • /
    • pp.36-45
    • /
    • 2023
  • The increasing demand for ultra-high efficiency of compact power conversion systems for electric vehicle applications has brought GaN power semiconductors to the fore due to their low conduction losses and fast switching speed. In particular, the development of materials and core device processes contributed to remarkable results regarding the publication of vertical GaN power devices with high breakdown voltage. This paper reviews recent advances on GaN material technology and vertical GaN power device technology. The GaN material technology covers the latest technological trends and GaN epitaxial growth technology, while the vertical GaN power device technology examines diodes, Trench FETs, JFETs, and FinFETs and reviews the vertical GaN PiN diode technology developed by ETRI.

Technical Trends of Semiconductors for Harsh Environments (극한 환경용 반도체 기술 동향)

  • Chang, W.;Mun, J.K.;Lee, H.S.;Lim, J.W.;Baek, Y.S.
    • Electronics and Telecommunications Trends
    • /
    • v.33 no.6
    • /
    • pp.12-23
    • /
    • 2018
  • In this paper, we review the technical trends of diamond and gallium oxide ($Ga_2O_3$) semiconductor technologies among ultra-wide bandgap semiconductor technologies for harsh environments. Diamond exhibits some of the most extreme physical properties such as a wide bandgap, high breakdown field, high electron mobility, and high thermal conductivity, yet its practical use in harsh environments has been limited owing to its scarcity, expense, and small-sized substrate. In addition, the difficulty of n-type doping through ion implantation into diamond is an obstacle to the normally-off operation of transistors. $Ga_2O_3$ also has material properties such as a wide bandgap, high breakdown field, and high working temperature superior to that of silicon, gallium arsenide, gallium nitride, silicon carbide, and so on. In addition, $Ga_2O_3$ bulk crystal growth has developed dramatically. Although the bulk growth is still relatively immature, a 2-inch substrate can already be purchased, whereas 4- and 6-inch substrates are currently under development. Owing to the rapid development of $Ga_2O_3$ bulk and epitaxy growth, device results have quickly followed. We look briefly into diamond and $Ga_2O_3$ semiconductor devices and epitaxy results that can be applied to harsh environments.

Variation of optical characteristics with the thickness of bulk GaN grown by HVPE (HVPE로 성장시킨 bulk GaN의 두께에 따른 광학적 특성 변화)

  • Lee, Hee Ae;Park, Jae Hwa;Lee, Jung Hun;Lee, Joo Hyung;Park, Cheol Woo;Kang, Hyo Sang;Kang, Suk Hyun;In, Jun Hyeong;Shim, Kwang Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.1
    • /
    • pp.9-13
    • /
    • 2018
  • In this work, we investigated the variation of optical characteristics with the thickness of bulk GaN grown by hydride vapor phase epitaxy(HVPE) to evaluate applicability as GaN substrates in fabrication of high-brightness optical devices and high-power devices. We fabricated 2-inch GaN substrates by using HVPE method of various thickness (0.4, 0.9, 1.5 mm) and characterized the optical property with the variation of defect density and the residual stress using chemical wet etching, Raman spectroscopy and photoluminescence. As a result, we confirmed the correlation of optical properties with GaN crystal thickness and applicability of high performance optical devices via fabrication of homoepitaxial substrate.

Heat Treatment of Carbonized Photoresist Mask with Ammonia for Epitaxial Lateral Overgrowth of a-plane GaN on R-plane Sapphire

  • Kim, Dae-sik;Kwon, Jun-hyuck;Jhin, Junggeun;Byun, Dongjin
    • Korean Journal of Materials Research
    • /
    • v.28 no.4
    • /
    • pp.208-213
    • /
    • 2018
  • Epitaxial ($11{\bar{2}}0$) a-plane GaN films were grown on a ($1{\bar{1}}02$) R-plane sapphire substrate with photoresist (PR) masks using metal organic chemical vapor deposition (MOCVD). The PR mask with striped patterns was prepared using an ex-situ lithography process, whereas carbonization and heat treatment of the PR mask were carried out using an in-situ MOCVD. The heat treatment of the PR mask was continuously conducted in ambient $H_2/NH_3$ mixture gas at $1140^{\circ}C$ after carbonization by the pyrolysis in ambient $H_2$ at $1100^{\circ}C$. As the time of the heat treatment progressed, the striped patterns of the carbonized PR mask shrank. The heat treatment of the carbonized PR mask facilitated epitaxial lateral overgrowth (ELO) of a-plane GaN films without carbon contamination on the R-plane sapphire substrate. Thhe surface morphology of a-plane GaN films was investigated by scanning electron microscopy and atomic force microscopy. The structural characteristics of a-plane GaN films on an R-plane sapphire substrate were evaluated by ${\omega}-2{\theta}$ high-resolution X-ray diffraction. The a-plane GaN films were characterized by X-ray photoelectron spectroscopy (XPS) to determine carbon contamination from carbonized PR masks in the GaN film bulk. After $Ar^+$ ion etching, XPS spectra indicated that carbon contamination exists only in the surface region. Finally, the heat treatment of carbonized PR masks was used to grow high-quality a-plane GaN films without carbon contamination. This approach showed the promising potential of the ELO process by using a PR mask.