• 제목/요약/키워드: Ga doping

검색결과 224건 처리시간 0.025초

Mn 도핑한 $ZnGa_2O_4$ 형광체의 제조 및 빛발광 특성 (Preparation and Photoluminescence of Mn-Doped $ZnGa_2O_4$ Phosphors)

  • 류호진;박희동
    • 한국세라믹학회지
    • /
    • 제33권5호
    • /
    • pp.531-535
    • /
    • 1996
  • ZnGa2O4 and Mn-doped ZnGa2O4 were synthesized using the state reaction method to investigate their photoluminescence characteristics depending on Mn concentration. Under 254nm excitation, ZnGa2O4 exhibited a broad-band emission extending from 330 nm to 610 nm peaking at 450nm. On the other hand Mn-doped ZnGa2O4 showed a new strong narrow-band emission peaking at 504 nm and maximum intensity at the doping concentration of 0.006 mole Mn.

  • PDF

Si이 첨가된 $In_{0.1}Ga_{0.9}As$ 에피층의 Sit셀 온도에 따른 표면특성 연구 (Surface characteristics of Si-doped $In_{0.1}Ga_{0.9}As$ epilayers due to Si-cell temperature)

  • 김동렬;이동율;배인호
    • 한국전기전자재료학회논문지
    • /
    • 제13권7호
    • /
    • pp.551-556
    • /
    • 2000
  • We have investigated the effect of surface In composition with Si cell temperature on the In$_{0.1}$/Ga$_{0.9}$/As epilayers grown on GaAs substrates. The epilayers were grown by molecular beam epitaxy(MBE) method and were characterized by the pthotoreflectance(PR) measurements. The E$_{o}$ bandgap energies of In$_{0.1}$/Ga$_{0.9}$/As epilayers were observed at around 1.28 eV at room temperature, and the additional shoulder peaks appeared at the higher energies than E$_{o}$ with increase of Si doping concentrations. The intensity of the additional shoulder peak was decreased with lowering the measurement temperature and the peak disappeared with the increase of surface etching time. This results hows that In composition at surface of InGaAs epilayer is decreased with the increase of the doping cell temperature. We consider that the reason of the decrease of In composition at the surface should be due to In re-evaporation from the surface by radiation heat of Si doping cell.ell.ell.ell.

  • PDF

상 변화 메모리 재료 내의 Ga 주입에 미치는 GaGe 스퍼터링 전력의 영향 (Effect of GaGe Sputtering Power on Ga Doping in Phase Change Memory Materials)

  • 정순원;이승윤
    • 한국전기전자재료학회논문지
    • /
    • 제28권5호
    • /
    • pp.285-290
    • /
    • 2015
  • The phase change memory material is an active element in phase change memory and exhibits reversible phase transition behavior by thermal energy input. The doping of the phase change memory material with Ga leads to the increase of its crystallization temperature and the improvement of its amorphous stability. In this study, we investigated the effect of GaGe sputtering power on the formation of the phase change memory material including Ga. The deposition rate linearly increased to a maximum of 127 nm and the surface roughness remained uniform as the GaGe sputtering power increased in the range from 0 to 75 W. The Ga concentration in the thin film material abruptly increased at the critical sputtering power of 60 W. This influence of GaGe sputtering power was confirmed to result from a combined sputtering-evaporation process of Ga occurring due to the low melting point of Ga ($29.77^{\circ}C$).

Mg가 첨가된 GaN:Er 발광 현상에 관한 연구 (Photoluminescence and Photoluminescence Excitation Spectra of Mg-codoped GaN:Er)

  • 김상식;성만영;홍진기
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 하계학술대회 논문집
    • /
    • pp.33-38
    • /
    • 2000
  • The ~1540 nm Er$^{3+}$ photoluminescence (PL) and photoluminescence excitation (PLE) spectra of Er-implanted Mg-codoped GaN (GaN:Er+Mg) exhibit that the excitation efficiency of a specific Er$^{3+}$ center among different Er$^{3+}$ centers existing in Er-implanted GaN is selectively enhanced, compared to Er-implanted undoped GaN (GaN:Er). In GaN:Er+Mg, the 1540 nm PL peaks characteristic of the so-called "violet-pumped" Er$^{3+}$ center and the ~2.8-3.4 eV (violet) PLE band are significantly strengthened by the Mg-doping. The intra-f absorption PLE bands associated with this "violet-pumped" center are also enhanced by this doping. The 1540 nm PL peaks originating from the violet-pumped center dominate the above-gap-excited Er$^{3+}$ PL spectrum of GaN:Er+Mg, whereas it was unobservable under above-gap excitation in GaN:Er. All of these results indicate that Mg doping increases the efficiency of trap-mediated excitation of Er$^{3+}$ emission in Er-implanted GaN.planted GaN.

  • PDF

Sol-gel 법으로 제작한 Ga-doped ZnO 박막의 도핑 농도와 열처리 온도가 전기적 및 광학적 특성에 미치는 효과 (Effects of Doping Concentrations and Annealing Temperatures on the Electrical and Optical Properties of Ga-doped ZnO Thin Films by Sol-gel Method)

  • 강성준;정양희
    • 한국정보통신학회논문지
    • /
    • 제16권3호
    • /
    • pp.558-564
    • /
    • 2012
  • Sol-gel 법으로 Eagle 2000 유리 기판 위에 Ga 도핑 농도와 열처리 온도에 따른 GZO 박막을 제작하여, 전기적 및 광학적 특성을 조사하였다. 1 mol% Ga 이 도핑되고 $600^{\circ}C$에서 열처리한 GZO 박막에서 가장 우수한 (002) 배향성이 관찰되었다. Hall 측정 결과, Ga 도핑 농도가 증가함에 따라 segregation 효과로 인한 캐리어 농도의 감소와 비저항 값의 증가가 관찰되었다. 1 mol% Ga 이 도핑되고 $600^{\circ}C$에서 열처리한 GZO 박막에서 가장 큰 캐리어 농도($9.13{\times}10^{18}cm^{-3}$)와 가장 낮은 비저항 ($0.87{\Omega}cm$) 값을 나타내었다. 모든 박막은 가시광 영역에서 약 80 % 이상의 투과율을 보였으며, Ga 농도가 1 에서 4 mol% 로 증가함에 따라 에너지 밴드 갭이 좁아지는 Burstein-Moss 효과가 관찰되었다.

Controllability of Structural, Optical and Electrical Properties of Ga doped ZnO Nanowires Synthesized by Physical Vapor Deposition

  • Lee, Sang Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • 제14권3호
    • /
    • pp.148-151
    • /
    • 2013
  • The control of Ga doping in ZnO nanowires (NWs) by physical vapor deposition has been implemented and characterized. Various Ga-doped ZnO NWs were grown using the vapor-liquid-solid (VLS) method, with Au catalyst on c-plane sapphire substrate by hot-walled pulsed laser deposition (HW-PLD), one of the physical vapor deposition methods. The structural, optical and electrical properties of Ga-doped ZnO NWs have been systematically analyzed, by changing Ga concentration in ZnO NWs. We observed stacking faults and different crystalline directions caused by increasing Ga concentration in ZnO NWs, using SEM and HR-TEM. A $D^0X$ peak in the PL spectra of Ga doped ZnO NWs that is sharper than that of pure ZnO NWs has been clearly observed, which indicated the substitution of Ga for Zn. The electrical properties of controlled Ga-doped ZnO NWs have been measured, and show that the conductance of ZnO NWs increased up to 3 wt% Ga doping. However, the conductance of 5 wt% Ga doped ZnO NWs decreased, because the mean free path was decreased, according to the increase of carrier concentration. This control of the structural, optical and electrical properties of ZnO NWs by doping, could provide the possibility of the fabrication of various nanowire based electronic devices, such as nano-FETs, nano-inverters, nano-logic circuits and customized nano-sensors.

Photoluminescence of Neutron-irradiated GaN Films and Nanowires

  • Seong, Ho-Jun;Yeom, Dong-Hyuk;Kim, Hyun-Suk;Cho, Kyoung-Ah;Kim, Sang-Sig
    • 한국전기전자재료학회논문지
    • /
    • 제21권7호
    • /
    • pp.603-609
    • /
    • 2008
  • Photoluminescence (PL) of neutron-irradiated GaN films and nanowires is investigated in this study. The GaN films and nanowires were irradiated by neutron beams in air at room temperature, and the neutron-irradiated films and nanowires were annealed in an atmosphere of $NH_3$ at temperatures ranging from 500 to $1100^{\circ}C$. The line-shapes of the PL spectra taken from the neutron-irradiated GaN films and nanowires were changed differently with increasing annealing temperature. In this study, light-emitting centers created in the neutron-irradiated GaN films and nanowires are examined and their origins are discussed. In addition, it is suggested here that the neutron-transmutation-doping is a simple and useful means of homogeneous impurity doping into nanowires with control of the doping concentration.

The critical Mg doping on the blue light emission in p-type GaN thin films grown by metal-organic chemical vapor deposition

  • Kim, Keun-Joo
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 기술교육위원회 창립총회 및 학술대회 의료기기전시회
    • /
    • pp.52-59
    • /
    • 2001
  • The photoluminescence and the photo-current from p-type GaN films were investigated on both room- and low-temperatures for various Mg doping concentrations. At a low Mg doping level, there exists a photoluminescence center of the donor and the acceptor pair transition of the 3.28-eV band. This center is correlated with the defects for a shallow donor of the VGa and for an acceptor of MgGa. The acceptor level shows the binding energy of 0.2-0.25 eV, which was observed by the photon energy of the photo-current signal of 3.02-3.31 eV. At a high Mg doping level, there is a photoluminescence center of a deep donor and an acceptor pair transition of the 2.76-eV blue band. This center is attributed to the defect structures of MgGa-VN for the deep donor and MgGa for the acceptor. For low. doped samples, thermal annealing provides an additional photo-current signal for an unoccupied deep acceptor levels of 0.87-1.35 eV above valence band, indicating the p-type activation.

  • PDF

Mo 기판위의 NaF 중간층을 이용한 Cu(In,Ga)Se2 광흡수층의 Na 도핑특성에 관한 연구 (Na Doping Properties of Cu(In,Ga)Se2 Absorber Layer Using NaF Interlayer on Mo Substrate)

  • 박태정;신동협;안병태;윤재호
    • 한국재료학회지
    • /
    • 제19권8호
    • /
    • pp.452-456
    • /
    • 2009
  • In high-efficiency Cu(In,Ga)$Se_2$ solar cells, Na is doped into a Cu(In,Ga)$Se_2$ light-absorbing layer from sodalime-glass substrate through Mo back-contact layer, resulting in an increase of device performance. However, this supply of sodium is limited when the process temperature is too low or when a substrate does not supply Na. This limitation can be overcome by supplying Na through external doping. For Na doping, an NaF interlayer was deposited on Mo/glass substrate. A Cu(In,Ga)$Se_2$ absorber layer was deposited on the NaF interlayer by a three-stage co-evaporation process As the thickness of NaF interlayer increased, smaller grain sizes were obtained. The resistivity of the NaF-doped CIGS film was of the order of $10^3{\Omega}{\cdot}cm$ indicating that doping was not very effective. However, highest conversion efficiency of 14.2% was obtained when the NaF thickness was 25 nm, suggesting that Na doping using an NaF interlayer is one of the possible methods for external doping.

Effect of Growth Factors in Doping Concentration of MBE Grown GaAs for Tunnel Diode in Multijunction Solar Cell

  • 박광욱;강석진;권지혜;김준범;여찬일;이용탁
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.308-309
    • /
    • 2012
  • One of the critical issues in the growth of multijunction solar cell is the formation of a highly doped Esaki interband tunnel diode which interconnects unit cells of different energy band gap. Small electrical and optical losses are the requirements of such tunnel diodes [1]. To satisfy these requirements, tens of nanometer thick gallium arsenide (GaAs) can be a proper candidate due to its high carrier concentration in low energy band gap. To obtain highly doped GaAs in molecular beam epitaxy, the temperatures of Si Knudsen cell (K-cell) for n-type GaAs and Be K-cell for p-type GaAs were controlled during GaAs epitaxial growth, and the growth rate is set to 1.75 A/s. As a result, the doping concentration of p-type and n-type GaAs increased up to $4.7{\times}10^{19}cm^{-3}$ and $6.2{\times}10^{18}cm^{-3}$, respectively. However, the obtained n-type doping concentration is not sufficient to form a properly operating tunnel diode which requires a doping concentration close to $1.0{\times}10^{19}cm^{-3}$ [2]. To enhance the n-type doping concentration, n-doped GaAs samples were grown with a lower growth rate ranging from 0.318 to 1.123 A/s at a Si K-cell temperature of $1,180^{\circ}C$. As shown in Fig. 1, the n-type doping concentration was increased to $7.7{\times}10^{18}cm^{-3}$ when the growth rate was decreased to 0.318 A/s. The p-type doping concentration also increased to $4.1{\times}10^{19}cm^{-3}$ with the decrease of growth rate to 0.318 A/s. Additionally, bulk resistance was also decreased in both the grown samples. However, a transmission line measurement performed on the n-type GaAs sample grown at the rate of 0.318 A/s showed an increased specific contact resistance of $6.62{\times}10^{-4}{\Omega}{\cdot}cm^{-2}$. This high value of contact resistance is not suitable for forming contacts and interfaces. The increased resistance is attributed to the excessively incorporated dopant during low growth rate. Further studies need to be carried out to evaluate the effect of excess dopants on the operation of tunnel diode.

  • PDF