• Title/Summary/Keyword: Ga doped

Search Result 489, Processing Time 0.043 seconds

Fabrication of GaN Transistor on SiC for Power Amplifier (전력증폭기용 SiC 기반 GaN TR 소자 제작)

  • Kim, Sang-Il;Lim, Byeong-Ok;Choi, Gil-Wong;Lee, Bok-Hyung;Kim, Hyoung-Joo;Kim, Ryun-Hwi;Im, Ki-Sik;Lee, Jung-Hee;Lee, Jung-Soo;Lee, Jong-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.2
    • /
    • pp.128-135
    • /
    • 2013
  • This letter presents the MISHFET with si-doped AlGaN/GaN heterostructure for power amplifier. The device grown on 6H-SiC(0001) substrate with a gate length of 180 nm has been fabricated. The fabricated device exhibited maximum drain current density of 837 mA/mm and peak transconductance of 177 mS/mm. A unity current gain cutoff frequency was 45.6 GHz and maximum frequency of oscillation was 46.5 GHz. The reported output power density was 1.54 W/mm and A PAE(Power Added Efficiency) was 40.24 % at 9.3 GHz.

GaAs solar cells for a satellite application (위성체의 동력원으로서의 GaAs 태양전지)

  • 이승기;한민구
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.620-626
    • /
    • 1988
  • GaAs solar cells may be the most attractive and efficient power source of a satellite. GaAs is more radiation tolerant and less temperature sensitive than widely used silicon. $Al_{x}$ Ga$_{1-x}$ As/GaAs solar cells have been designed and fabricated by Liquid Phase Epitaxial method. GaAs solar cells, of which structure is about 0.2 .mu.m p$^{+}$ - window layer, 0.6-1.O .mu.m Ge-doped p-layer. 3.mu.m n-GaAs layer and n$^{+}$ - buffer layer, have been characterized as a function of operating temperature from 25 .deg.C to 130 .deg.C. Open circuit voltage decreases linearly with increasing temperature by 1.4-1.51 mV/ .deg.C while degradation of silicon solar cells is about 2.2-2.5 mV/ .deg.C, short circuit current does not increase much with increasing temperature. Relative efficiency decreases with increasing of temperature by about 0.21-0.29 %/ .deg.C. Efficiency degradation of silicon solar cells with temperature is known to be about 0.5%/ .deg.C and our results show GaAs solar cells may be an excellent candidate for concentrated solar cells.ells.

  • PDF

Effect of Growth Factors in Doping Concentration of MBE Grown GaAs for Tunnel Diode in Multijunction Solar Cell

  • Park, Gwang-Uk;Gang, Seok-Jin;Gwon, Ji-Hye;Kim, Jun-Beom;Yeo, Chan-Il;Lee, Yong-Tak
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.308-309
    • /
    • 2012
  • One of the critical issues in the growth of multijunction solar cell is the formation of a highly doped Esaki interband tunnel diode which interconnects unit cells of different energy band gap. Small electrical and optical losses are the requirements of such tunnel diodes [1]. To satisfy these requirements, tens of nanometer thick gallium arsenide (GaAs) can be a proper candidate due to its high carrier concentration in low energy band gap. To obtain highly doped GaAs in molecular beam epitaxy, the temperatures of Si Knudsen cell (K-cell) for n-type GaAs and Be K-cell for p-type GaAs were controlled during GaAs epitaxial growth, and the growth rate is set to 1.75 A/s. As a result, the doping concentration of p-type and n-type GaAs increased up to $4.7{\times}10^{19}cm^{-3}$ and $6.2{\times}10^{18}cm^{-3}$, respectively. However, the obtained n-type doping concentration is not sufficient to form a properly operating tunnel diode which requires a doping concentration close to $1.0{\times}10^{19}cm^{-3}$ [2]. To enhance the n-type doping concentration, n-doped GaAs samples were grown with a lower growth rate ranging from 0.318 to 1.123 A/s at a Si K-cell temperature of $1,180^{\circ}C$. As shown in Fig. 1, the n-type doping concentration was increased to $7.7{\times}10^{18}cm^{-3}$ when the growth rate was decreased to 0.318 A/s. The p-type doping concentration also increased to $4.1{\times}10^{19}cm^{-3}$ with the decrease of growth rate to 0.318 A/s. Additionally, bulk resistance was also decreased in both the grown samples. However, a transmission line measurement performed on the n-type GaAs sample grown at the rate of 0.318 A/s showed an increased specific contact resistance of $6.62{\times}10^{-4}{\Omega}{\cdot}cm^{-2}$. This high value of contact resistance is not suitable for forming contacts and interfaces. The increased resistance is attributed to the excessively incorporated dopant during low growth rate. Further studies need to be carried out to evaluate the effect of excess dopants on the operation of tunnel diode.

  • PDF

Effect of WO3 or Ga2O3 Addition on the Phase Evolution and Properties of Y2O3-Doped AlN Ceramics (Y2O3-AlN 세라믹스의 생성상 및 물성에 미치는 WO3 및 Ga2O3의 첨가효과)

  • Shin, Hyunho;Yoon, Sang-Ok;Kim, Shin;Hwang, Injoon
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.3
    • /
    • pp.206-211
    • /
    • 2013
  • The effect of a $WO_3$ or $Ga_2O_3$ addition on the densification, phase evolution, optical reflectance, and elastic and dielectric properties of $Y_2O_3$-doped AlN ceramics sintered at $1800^{\circ}C$ for 3 h is investigated. The investigated compositions of the additives are 4.5 wt% $Y_2O_3$ (YA), 3.5 wt% $Y_2O_3$-1.0 wt% $Ga_2O_3$ (YGA), and 3.5 wt% $Y_2O_3$-1.0 wt% $WO_3$ (YWA). $YAlO_3$ and $Y_4Al_2O_9$ form as the secondary phases in all of the investigated compositions, whereas $W_2B$ appears additionally in the YWA. In the YGA, Ga is detected in the AlN grains, indicating that the dissolution of $Ga_2O_3$ into the AlN lattice occurs. The addition of $WO_3$ blackens the specimen more significantly than that of $Ga_2O_3$ does. In all of the investigated specimens, the linear shrinkage and the apparent density are above 20 percent and in the range of 3.34-3.37 $g/cm^3$, respectively. The elastic modulus, Poisson's ratio, the dielectric constant, and the dielectric loss are in the ranges of 335-368 GPa, 0.146-0.237, 8.60-8.63, $2.65-3.95{\times}10^{-3}$, respectively. The sinterability and the properties of $Y_2O_3$-doped AlN ceramics are not much altered by the addition of $WO_3$ or $Ga_2O_3$.

An X-Band Carbon-Doped InGaP/GaAs Heterojunction Bipolar Transistor MMIC Oscillator

  • Kim, Young-Gi;Kim, Chang-Woo;Kim, Seong-Il;Min, Byoung-Gue;Lee, Jong-Min;Lee, Kyung-Ho
    • ETRI Journal
    • /
    • v.27 no.1
    • /
    • pp.75-80
    • /
    • 2005
  • This paper addresses a fully-integrated low phase noise X-band oscillator fabricated using a carbon-doped InGaP heterojunction bipolar transistor (HBT) GaAs process with a cutoff frequency of 53.2 GHz and maximum oscillation frequency of 70 GHz. The oscillator circuit consists of a negative resistance generating circuit with a base inductor, a resonating emitter circuit with a microstrip line, and a buffering resistive collector circuit with a tuning diode. The oscillator exhibits 4.33 dBm output power and achieves -127.8 dBc/Hz phase noise at 100 kHz away from a 10.39 GHz oscillating frequency, which benchmarks the lowest reported phase noise achieved for a monolithic X-band oscillator. The oscillator draws a 36 mA current from a 6.19 V supply with 47.1 MHz of frequency tuning range using a 4 V change. It occupies a $0.8mm{\times}0.8mm$ die area.

  • PDF

A Study on Photoreflectance of Heavily Si Doped GaAs (Si이 고농도로 첨가된 GaAs의 photoreflectance에 관한 연구)

  • Bae, In-Ho;Lee, Jeong-Yeol;Kim, In-Su;Lee, Cheol-Uk;Choe, Hyeon-Tae;Lee, Sang-Yun;Han, Byeong-Guk
    • Korean Journal of Materials Research
    • /
    • v.4 no.6
    • /
    • pp.723-729
    • /
    • 1994
  • We have investigated on the photoreflectance(PR) of heavily Si-doped n-GaAs. The PR response was found to be dependent of modulation beam intensity, modulation frequency, and temperature. From the observed Franz-Keldysh oscillation(FKO), we determined the band gap energy and surface electric field. As the temperature is decreased from room temperature to 77K, the band gap energy increases while the surface electric field decreases. The quality of crystal was greatly increased after thermal annealing for 5 min at $500^{\circ}C$.

  • PDF

Improving Electrochemical Properties of LiFePO4 by Doping with Gallium

  • Nguyen, Van Hiep;Park, Ju-Young;Gu, Hal-Bon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.6
    • /
    • pp.320-323
    • /
    • 2014
  • Ga-doped $LiFePO_4$ cathode materials were synthesized using a hydrothermal method. The microstructural characteristics and electrochemical performances were systematically investigated using field emission scanning electron microscopy, high-resolution X-ray diffraction, energy dispersive X-ray spectroscopy, charge-discharge cycling, cyclic voltammetry, and electrochemical impedance spectroscopy. Among the as-prepared samples, $LiFe_{0.96}Ga_{0.04}PO_4$ demonstrates the best electrochemical properties in terms of discharge capacity, electrochemical reversibility, and cycling performance with an initial discharge capacity of $125mAh\;g^{-1}$ and high lithium ion diffusion coefficient of $1.38{\times}10^{-14}cm^2s^{-1}$ (whereas for $LiFePO_4$, these were $113mAh\;g^{-1}$ and $8.09{\times}10^{-15}cm^2\;s^{-1}$, respectively). The improved electrochemical performance can be attributed to the facilitation of Li+ ion effective diffusion induced by $Ga^{3+}$ substitution.