• Title/Summary/Keyword: Ga)Se_2$

Search Result 526, Processing Time 0.037 seconds

A Study on Interpretation of Architectural Drawings on $Y\^{a}e\;Se\^{o}$ in the Cho-Sun Dynasty (조선시대 예서(禮書)에 나타난 건축적(建築的) 도면(圖面)의 해석(解釋)에 관한 연구)

  • Hong, Seung-Jai
    • Journal of architectural history
    • /
    • v.1 no.2 s.2
    • /
    • pp.52-67
    • /
    • 1992
  • In Cho-Sun Dynasty, since Czhu-Ja Ga Rae be introduced in late Korea dynasty, many kinds of $Y\^{a}e\;Se\^{o}$ by a personal or national edition had been published, based on supports of the political ideology. Especially, in the age of governing by $'Y^{a}e'$ in 16 17c, after completion of publishing $'Oh\;R^{a}e\;Yi(1474),'$ 'Geong Guk Dae Jeon (1469)' in late 15c, norm of $'Ga\;R^{a}e'$ has prevailing and the quantity of publishment of it is more growing. Generally, the contents of these kinds of $Y^{a}e\;Se^{o}$ is intended to interprete the czhu-Ja $'Ga\;R^{a}e'$. and furthermore, some kinds of it, descripted directly architectural institutions as a part of $Y^{a}e\;J^{a}e$ through architectural drawings, with quatating chinese scholar's theory. It can be said that architectural institution on $Y^{a}e\;S^{e}o$ may be a kind of political institution as a tool for execution of a ideal ideology in Confucianism. In this Context, it can be concluded that the governing-class in Cho-Sun Dynasty refered to the architectural institution on $Y^{a}e Se^{o}$ as a ideal norm and, in constructing or organizing buildings, it was taken in account as a 'frame of reference'. The Locus of this study is on architectural drawings on $Y^{a}e\;Se^{o}$, for certifying interrelationship the institution which is executed in the drawings and the architectural characteristics of construction and organization in Cho-Sun Dynasty.

  • PDF

Electrical Characteristics of Solution-processed Cu(In,Ga)S2 Thin Film Solar Cells (용액 공정으로 만든 Cu(In,Ga)S2 박막태양전지의 전기적 특성)

  • Kim, Ji Eun;Min, Byoung Koun;Kim, Dong-Wook
    • Current Photovoltaic Research
    • /
    • v.2 no.2
    • /
    • pp.69-72
    • /
    • 2014
  • We investigated current-voltage (I-V) and capacitance (C)-V characteristics of solution-processed thin film solar cells, consisting of $Cu(In,Ga)S_2$ and $CuInS_2$ stacked absorber layers. The ideality factors, extracted from the temperature-dependent I-V curves, showed that the tunneling-mediated interface recombination was dominant in the cells. Rapid increase of both series- and shunt-resistance at low temperatures would limit the performance of the cells, requiring further optimization. The C-V data revealed that the carrier concentration of the $CuInS_2$ layer was about 10 times larger than that of the $Cu(In,Ga)S_2$ layer. All these results could help us to find strategies to improve the efficiency of the solution-processed thin film solar cells.

Electrical and Optical Properties with the Thickness of Cu(lnGa)$Se_2$ Absorber Layer (Cu(InGa)$Se_2$ 광흡수막의 두께에 따른 태양전지의 전기광학 특성)

  • Kim, S.K.;Lee, J.C.;Kang, K.H.;Yoon, K.H.;Park, I.J.;Song, J.;Han, S.O.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05c
    • /
    • pp.108-111
    • /
    • 2002
  • CIGS film has been fabricated on soda-lime glass, which is coated with Mo film. by multi-source evaporation process. The films has been prepared with thickness of 1.0 ${\mu}m$, 1.75${\mu}m$, 2.0${\mu}m$, 2.3${\mu}m$, and 3.0${\mu}m$. X-ray diffraction analysis with film thickness shows that CIGS films exhibit a strong (112) preferred orientation. Furthermore. CIGS films exhibited distinctly decreasing the full width of half-maximum and (112) preferred peak with film thickness. Also, The film's microstructure, such as the preferred orientation, the full width at half-maximum(FWHM), and the interplanar spacing were examined by X-ray diffraction. The preparation condition and the characteristics of the unit layers were as followings ; Mo back contact DC sputter, CIGS absorber layer : three-stage coevaporation, CdS buffer layer : chemical bath deposition, ZnO window layer : RF sputtering, $MgF_2$ antireflectance : E-gun evaporation

  • PDF

Morphology and Electro-Optical Property of Mo Back Electrode for CuInGaSe2 Solar Cells (CuInGaSe2 태양전지용 Mo 후면 전극의 조직 및 전기광학적 특성)

  • Chae, Su-Byung;Kim, Myung-Han
    • Korean Journal of Materials Research
    • /
    • v.20 no.8
    • /
    • pp.412-417
    • /
    • 2010
  • Mo thin films were used for the back electrode because of the low resistivity in the Mo/$CuInGaSe_2$ contact in chalcopyrite solar cells. $1\;{\mu}m$ thick Mo thin films were deposited on soda lime glass by varying the Ar pressure with the dc-magnetron sputtering process. The effects of the Ar pressure on the morphology of the Mo back electrode were studied and the relationships between the morphology and electro-optical properties, namely, the resistivity as well as the reflectance of the Mo thin films, were investigated. The resitivity increased from $24\;{\mu}{\Omega}{\cdot}cm$ to $11833\;{\mu}{\Omega}{\cdot}cm$; this was caused by the increased surface defect and low crystallinity as the Ar pressure increased from $3{\times}10^{-3}$ to $3{\times}10^{-2}\;Torr$. The surface morphologies of the Mo thin films changed from somewhat coarse fibrous structures to irregular and fine celled structures with increased surface cracks along the cell boundaries, as the Ar pressure increased from $3{\times}10^{-3}$ to $3{\times}10^{-2}\;Torr$. The changes of reflectances in the visible light range with Ar pressures were mainly attributed to the surface morphological changes of the Mo thin films. The reflectance in the visible light range showed the highest value of 45% at $3{\times}10^{-3}\;Torr$ and decreased to 18.5% at $3{\times}10^{-2}\;Torr$.

Effect of Process Variation of Al Grid and ZnO Transparent Electrode on the Performance of Cu(In,Ga)Se2 Solar Cells (Al 그리드와 ZnO 투명전도막 의 공정변화에 따른 Cu(In,Ga)Se2 박막태양전지의 특성 연구)

  • Cho, Bo Hwan;Kim, Seon Cheol;Mun, Sun Hong;Kim, Seung Tae;Ahn, Byung Tae
    • Current Photovoltaic Research
    • /
    • v.3 no.1
    • /
    • pp.32-38
    • /
    • 2015
  • CIGS solar cell consisted of various films. In this research, we investigated electrode materials in $Cu(In,Ga)Se_2$ (CIGS) cells, including Al-doped ZnO (ZnO:Al), intrinsic ZnO (i-ZnO), and Al films. The sputtered ZnO:Al film with a sputtering power at 200W showed the lowest series resistance and highest cell efficiency. The electrical resistivity of the 200-W sputtered ZnO:Al film was $5.2{\times}10^{-4}{\Omega}{\cdot}cm$ by the rapid thermal annealing at $200^{\circ}C$ for 1 min. The electrical resistivity of i-ZnO was not measurable due to its high resistance. But the optical transmittance was highest with less oxygen supply and high efficiency cell was achieved with $O_2/(Ar+O_2)$ ratio was 1% due to the increase of short-circuit current. No significant change in the cell performance by inserting a Ni layer between Al and ZnO:Al films was observed.

Growth and Electrical Properties of ZnAl2Se4 Single Crystal Thin Film by Hot Wall Epitaxy (Hot Wall Epitaxy(HWE)법에 의한 ZnAl2Se4 단결정 박막 성장과 가전자대 갈라짐에 대한 광전류 연구)

  • Park, Hyangsook;Bang, Jinju;Lee, Kijung;Kang, Jongwuk;Hong, Kwangjoon
    • Korean Journal of Materials Research
    • /
    • v.23 no.12
    • /
    • pp.714-721
    • /
    • 2013
  • A stoichiometric mixture of evaporating materials for $ZnAl_2Se_4$ single-crystal thin films was prepared in a horizontal electric furnace. These $ZnAl_2Se_4$ polycrystals had a defect chalcopyrite structure, and its lattice constants were $a_0=5.5563{\AA}$ and $c_0=10.8897{\AA}$.To obtain a single-crystal thin film, mixed $ZnAl_2Se_4$ crystal was deposited on the thoroughly etched semi-insulating GaAs(100) substrate by a hot wall epitaxy (HWE) system. The source and the substrate temperatures were $620^{\circ}C$ and $400^{\circ}C$, respectively. The crystalline structure of the single-crystal thin film was investigated by using a double crystal X-ray rocking curve and X-ray diffraction ${\omega}-2{\theta}$ scans. The carrier density and mobility of the $ZnAl_2Se_4$ single-crystal thin film were $8.23{\times}10^{16}cm^{-3}$ and $287m^2/vs$ at 293 K, respectively. To identify the band gap energy, the optical absorption spectra of the $ZnAl_2Se_4$ single-crystal thin film was investigated in the temperature region of 10-293 K. The temperature dependence of the direct optical energy gap is well presented by Varshni's relation: $E_g(T)=E_g(0)-({\alpha}T^2/T+{\beta})$. The constants of Varshni's equation had the values of $E_g(0)=3.5269eV$, ${\alpha}=2.03{\times}10^{-3}eV/K$ and ${\beta}=501.9K$ for the $ZnAl_2Se_4$ single-crystal thin film. The crystal field and the spin-orbit splitting energies for the valence band of the $ZnAl_2Se_4$ were estimated to be 109.5 meV and 124.6 meV, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that splitting of the ${\Delta}so$ definitely exists in the ${\Gamma}_5$ states of the valence band of the $ZnAl_2Se_4/GaAs$ epilayer. The three photocurrent peaks observed at 10 K are ascribed to the $A_1$-, $B_1$-exciton for n = 1 and $C_{21}$-exciton peaks for n = 21.

Band gap of Single-Layer Metal Monochalcogenides

  • Kim, Da-Jeong;;Hyeon, Jeong-Min
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.392-395
    • /
    • 2015
  • Metal Mono Chalcogenides(MMC)는 각각의 III족 metal 원자당한개의 chalchogen 원자를 갖고 있는(MX, M=Ga and In, X=S, Se, and Te)층상구조 화합물이다. MMC가 주목받는 가장 큰 이유는 single tetralayer MMC(SL-MMC)라는 2차원 구조를 갖기 때문이다. 2차원 물질은 다양한 물리적 현상을 증명하기 용이하다는 특징을 갖는다. 이 논문에서 우리는 SL-MMC중 Ga-MMC에서 chalchogen 원자가 변화함에 따라 바뀌는 실험 lattice constant를 조사하여 band gap과 formation energy를 Density Function Theory(DFT)로 계산했다.

  • PDF

Remote Plasma Etching of Photoresist Using Pin-To-Plate Dielectric Barrier Discharge

  • Park, Jae-Beom;Gyeong, Se-Jin;Yeom, Geun-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.04a
    • /
    • pp.82-83
    • /
    • 2007
  • DBD type을 이용한 remote plasma에서 발생된 대기압 플라즈마를 이용하여, PR에 대한 식각 실험을 진행하였다. 과거 습식 화학적 공정에서 오던 기술적 제한의 극복과 진공 플라즈마 가지는 단점을 극복하기 위해 대기압 플라즈마를 이용한 건식 세정에 관한 연구를 진행하였고, 이 때 Gas는 $N_2/O_2$+$SF_6$ 의 조합으로 사용하였으며, 각 gas의 유량에 다른 remote 플라즈마의 전기적, 광학적 특성에 대해 관찰하였다.

  • PDF

Fabraction and efficiency for n-CdS/p-CGS hetrojunction solar cell

  • Lee, Sang-Youl;Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.146-147
    • /
    • 2009
  • $CuGaSe_2$ (CGS) layers were grown by the hot wall epitaxy method. The optimum temperatures of the substrate and source for growth turned out to be 450 and $610^{\circ}C$, respectively. Based on the absorption measurement, the band-gap variation of CGS was well interpreted by the Varshni's equation. By analyzing these emissions, a band diagram of the observed optical transitions was obtained. From the solar cell measurement, an 11.17 % efficiency on the n-CdS/p-CGS junction was achieved.

  • PDF

Development of ZnSSe:Te/ZnMgSSe DH structure Blue~Green tight Emitting Diodes (ZnSSe:Te/ZnMgSSe DH 구조 청색~녹색발광다이오드의 개발)

  • 이홍찬
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.33-41
    • /
    • 2003
  • The optical properties of $ZnS_ySe_{1-\chi-y}:Te_{\chi}(\chi<0.08,y~0.11)$ alloys grown by molecular beam epitaxy (MBE) have been investigated by photoluminescence (PL) and PL-excitation (PLE) spectroscopy. Good optical properties and high crystal quality were established with lattice match condition to GaAs substrate. At room temperature, emission in the visible spectrum region from blue to green was obtained by varying the Te content of the ZnSSe:Te alloy. The efficient blue and green emission were assigned to $Te_1 and Te_n(n\geq2)$cluster bound excitons, respectively. Bright green (535 nm) and blue (462 nm) light emitting diodes (LEDs) have been developed using ZnSSe:Te system as an active layer. The turn-on voltage of 2.1 V in current-voltage characteristics is very small compared to that of commercial InGaN-based LEDs (>3.4 V), indicating the formation of a good ohmic contact due to the optimized p-ZnSe/p-ZnTe multi-quantum well (MQW) superlattice electrode layers.