• Title/Summary/Keyword: GWNU 관측소

Search Result 4, Processing Time 0.019 seconds

An Analysis of Global Solar Radiation using the GWNU Solar Radiation Model and Automated Total Cloud Cover Instrument in Gangneung Region (강릉 지역에서 자동 전운량 장비와 GWNU 태양 복사 모델을 이용한 지표면 일사량 분석)

  • Park, Hye-In;Zo, Il-Sung;Kim, Bu-Yo;Jee, Joon-Bum;Lee, Kyu-Tae
    • Journal of the Korean earth science society
    • /
    • v.38 no.2
    • /
    • pp.129-140
    • /
    • 2017
  • Global solar radiation was calculated in this research using ground-base measurement data, meteorological satellite data, and GWNU (Gangneung-Wonju National University) solar radiation model. We also analyzed the accuracy of the GWNU model by comparing the observed solar radiation according to the total cloud cover. Our research was based on the global solar radiation of the GWNU radiation site in 2012, observation data such as temperature and pressure, humidity, aerosol, total ozone amount data from the Ozone Monitoring Instrument (OMI) sensor, and Skyview data used for evaluation of cloud mask and total cloud cover. On a clear day when the total cloud cover was 0 tenth, the calculated global solar radiations using the GWNU model had a high correlation coefficient of 0.98 compared with the observed solar radiation, but root mean square error (RMSE) was relatively high, i.e., $36.62Wm^{-2}$. The Skyview equipment was unable to determine the meteorological condition such as thin clouds, mist, and haze. On a cloudy day, regression equations were used for the radiation model to correct the effect of clouds. The correlation coefficient was 0.92, but the RMSE was high, i.e., $99.50Wm^{-2}$. For more accurate analysis, additional analysis of various elements including shielding of the direct radiation component and cloud optical thickness is required. The results of this study can be useful in the area where the global solar radiation is not observed by calculating the global solar radiation per minute or time.

The Estimation of Monthly Average Solar Radiation using Sunshine Duration and Precipitation Observation Data in Gangneung Region (강릉지역의 일조시간과 강수량 관측자료를 이용한 월평균 일사량 추정)

  • Ahn, Seo-Hee;Zo, Il-Sung;Jee, Joon-Bum;Kim, Bu-Yo;Lee, Dong-Geon;Lee, Kyu-Tae
    • Journal of the Korean earth science society
    • /
    • v.37 no.1
    • /
    • pp.29-39
    • /
    • 2016
  • In this study, we estimated solar radiation by multiple regression analysis using sunshine duration and precipitation data, which are highly correlated to solar radiation. We found the regression equation using data obtained from GROM (Gangwon Regional Office of Metrology, station 105, 1980-2007) located in Gangneung, South Korea and validated the equation by applying data obtained from new GROM (newly relocated, station 104, 2009-2014) and data obtained from GWNU (Gangneung-Wonju National University, 2013-2014) located between stations 104 and 105. By using sunshine duration data alone, the estimation using data from station 104 resulted in a correlation coefficient of 0.96 and a standard error of $1.16MJm^{-2}$, which was similar to the previous results; the estimation using data from GWNU yielded better results with a correlation coefficient of 0.99 and a standard error of $0.57MJm^{-2}$. By using sunshine duration and precipitation data, the estimation (using data from station 104) yielded a correlation coefficient of 0.96 and a standard error of $0.99MJm^{-2}$, resulting in a lower standard error compared to what was obtained using sunshine duration data alone. The maximum solar radiation bias increased from -26.6% (March 2013) to -31.0% (February 2011) when both sunshine duration and precipitation data were incorporated into the estimation rather than when sunshine duration data alone was incorporated. This was attributed to the concentrated precipitation found during May and July-September, which resulted in negative coefficients of the estimating equation in other months. Therefore, the monthly average solar radiation should be estimated carefully when employing the monthly average precipitation for those places where precipitation is concentrated during summer, such as the Korean peninsula.

An Analysis of Observational Environments for Solar Radiation Stations of Korea Meteorological Administration using the Digital Elevation Model and Solar Radiation Model (수치표고모델과 태양복사모델을 이용한 기상청 일사 관측소 관측환경 분석)

  • Jee, Joon-Bum;Zo, Il-Sung;Kim, Bu-Yo;Lee, Kyu-Tae
    • Journal of the Korean earth science society
    • /
    • v.40 no.2
    • /
    • pp.119-134
    • /
    • 2019
  • In order to analyze the observational environment of solar radiation stations operated by the Korea Meteorological Administration (KMA), we used the digital elevation model (DEM) and the solar radiation model to calculate a topographical shading, sky view factor (SVF) and solar radiation by surrounding terrain. The sky line and SVF were calculated using high resolution DEM around 25 km of the solar stations. We analyzed the topographic effect by analyzing overlapped solar map with sky line. Particularly, Incheon station has low SVF whereas Cheongsong and Chupungryong station have high SVF. In order to validation the contribution of topographic effect, the solar radiation calculated using GWNU solar radiation model according to the sky line and SVF under the same meteorological conditions. As a result, direct, diffuse and global solar radiation were decreased by 12.0, 5.6, and 4.7% compared to plane surface on Cheongsong station. The 6 stations were decreased amount of mean daily solar radiation to the annual solar radiation. Among 42 stations, eight stations were analyzed as the urgent transfer stations or moving equipment quickly and more than half of stations (24) were required to review the observational environment. Since the DEM data do not include artifacts and vegetation around the station, the stations need a detail survey of observational environment.

Distribution of Surface Solar Radiation by Radiative Model in South Korea (복사 모델에 의한 남한의 지표면 태양광 분포)

  • Zo, Il-Sung;Jee, Joon-Bum;Lee, Won-Hak;Lee, Kyu-Tae;Choi, Young-Jean
    • Journal of Climate Change Research
    • /
    • v.1 no.2
    • /
    • pp.147-161
    • /
    • 2010
  • The temporal and spatial distributions of surface solar radiation were calculated by the one layer solar radiative transfer model(GWNU) which was corrected by multi layer Line-by-Line(LBL) model during 2009 in South Korea. The aerosol optical thickness, ozone amount, cloud fraction and total precipitable water were used as the input data for GWNU model run and they were retrieved from Moderate Resolution Imaging Spectrometer(MODIS), Ozone Monitoring Instrument(OMI), MTSAT-1R satellite data and the Regional Data Assimilation Prediction System(RDAPS) model result, respectively. The surface solar radiation was calculated with 4 km spatial resolution in South Korea region using the GWNU model and the results were compared with surface measurement(by pyranometer) data of 22 KMA solar sites. The maximum values(more than $5,400MJ/m^2$) of model calculated annual solar radiation were found in Andong, Daegu and Jinju regions and these results were corresponded with the MTSAT-1R cloud amount data. However, the spatial distribution of surface measurement data was comparatively different from the model calculation because of the insufficient correction and management problems for the sites instruments(pyranometer).