In a database system, the most expensive operation among relational operations is a join operation. Generally, CPU-based join operations uses parallel processing with either 1 core or 16 cores at most, which does not significantly improve the function. On the other hand, GPGPU(General-Purpose computing on Graphics Processing Units) allows parallel processing through thousands of processing units, greatly reducing the time required to perform join operations. Parallelization of the operation using GPGPU uses NVIDIA's CUDA SDK. In this paper, we implement parallelization of the join operation using GPGPU and compare the performances. The used join operations are Nested Loop Join (NLJ), Sort Merge Join (SMJ) and Hash Join (HJ), and GPGPU equipment uses TITAN Xp, GTX 1080 Ti and GTX 1080. We measure and compare the performance of join operations based on CPU and GPGPU. We compare this performance with the performance of the previous study on the join operation based on GPGPU. The results of experiment show that the performance based on GPGPU is 6~328 times faster than the one based on CPU.
Journal of The Korean Society of Clinical Toxicology
/
v.10
no.1
/
pp.37-40
/
2012
Honey is produced by bees from nectar collected from nearby flowers. Sometimes, honey produced from the Rhododendron species is contaminated by Grayanotoxin (GTX) in Nepal and other countries. There have been reports of GTX intoxication, also known as 'mad honey disease', from honey produced in countries other than Korea. The importation of wild honey has been prohibited by the Korean Food and Drug Administration since 2005, yet it is still distributed within Korea by the occasional tourist. We report a case of GTX intoxication from contaminated honey which included the symptoms of nausea, vomiting, general weakness, dizziness, blurred vision, hypotension and sinus bradycardia. By means of infusion with normal saline and atropine sulfate, the patient's condition fully recovered within 8 hours of hospital admission, and she was discharged without any complications.
The toxicity and toxin composition between blue mussel, Mytilus edulis and oyster, Crassostrea gigas collected at Woepori in Ko je island in South Coast of Korea in 1996 and 1997 were compared. The highest toxicity score was about 10 times higher in blue mussel than oyster (blue mussel, 8,670 $\mu\textrm{g}$; oyster, 860$\mu\textrm{g}$ in 1996, blue mussel, 5,657 $\mu\textrm{g}$/100g in 1997). The blue mussel also retained its toxicity for slightly longer period than oyster. In the both shellfish, PSP was composed almost exclusively of C toxicity (Cl and C2, 20~65%) and gonyautoxins (GTXl, 2, 3, and 4, 38~78%). In the early period of toxin accumulation, the ratio of 11$\beta$-epimer toxins (C2, GTX4) whose amount was 25~56 mole% (5th March to 12th April in 1996) and 25~80 mole% (18th March to 7th April in 1997), were higher than that of 11-epimer toxins (Cl, GTX2) whose amount was 41~57 mol%(27th May to 3rd June in 1996) and 25~56 mole% (29th April to 12th May in 1997), became higher than that of 11-epimer toxins. The toxin compositions in the both samples changed on a daily basis, presumably owing to metabolism of the toxin in the bivalves.
This paper proposes a parallel algorithm of the flocking behaviors using GPU. To do this, we used CUDA as the parallel processing architecture of GPU and then analyzed its characteristics and constraints. Based on them, the paper improved the performance by parallelizing to find the neighbors for an agent which requires the largest cost in the flocking behaviors. We implemented the proposed algorithm on GTX 285 GPU and compared experimentally its performance with the original spatial partitioning method. The results of the comparison showed that the proposed algorithm outperformed the original method up to 9 times with respect to the execution time.
International Journal of Internet, Broadcasting and Communication
/
v.7
no.2
/
pp.105-108
/
2015
There are a lot of traffic jams in the metropolitan area and the commuting time has been longer nowadays. So the urban people has been interested in the GTX(Great Train Express) project in Korea. The GTX is the train which runs at 200km/h speed in underground tunnels. If the train also operates at high speed in tunnel section, the pressure wave will happen and the uplift force of pantograph may vary abruptly. If the rigid trolley bar system is used in tunnel section, it is difficult to improve the commercial speed of train. In order to improve the train speed in tunnel section, this paper presents the new pantograph concepts which can change the suspension stiffness and deals with the dynamic behavior characteristics of pantograph according to the parameter variation.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.12
no.6
/
pp.591-596
/
2019
In this paper, we implemented a deep learning operation structure with less influence of local PC performance. In general, the deep learning model has a large amount of computation and is heavily influenced by the performance of the processing PC. In this paper, we implemented deep learning operation using AWS and streaming server to reduce this limitation. First, deep learning operations were performed on AWS so that deep learning operation would work even if the performance of the local PC decreased. However, with AWS, the output is less real-time relative to the input when computed. Second, we use streaming server to increase the real-time of deep learning model. If the streaming server is not used, the real-time performance is poor because the images must be processed one by one or by stacking the images. We used the YOLO v3 model as a deep learning model for performance comparison experiments, and compared the performance of local PCs with instances of AWS and GTX1080, a high-performance GPU. The simulation results show that the test time per image is 0.023444 seconds when using the p3 instance of AWS, which is similar to the test time per image of 0.027099 seconds on a local PC with the high-performance GPU GTX1080.
LEE Jong-Soo;JEON Joong-Kyun;HAN Myung-Soo;OSHIMA Yasukatsu;YASUMOTO Takeshi
Korean Journal of Fisheries and Aquatic Sciences
/
v.25
no.2
/
pp.144-150
/
1992
Paralytic shellfish toxins in mussels Mytilus edulis and dinoflagellate Alexandrium tamarene from Jinhae Bay, south coast of Korea were investigated. The mussels collected in March-April, 1989 showed toxicities of 7.5 MU/g of whole meat(31-88 MU/g of the digestive gland) , and those collected in 1990 showed toxicity level of 1.9-9.9 MU/g of whole meat by the standard mouse bioassay. Analysis of toxins by high performance liquid chromatography revealed the presence of gonyautoxin 1-4$(48-76\%)$ gonyautoxin 8 and epi-gonyautoxin $8(C1-C2,\;14-39\%)$, saxitoxin$(1-10\%)$, neosaxitoxin$(l-7\%)$ and trace amount of decarbamoylgonyautoxin 2 and 3(dcGTX2, dcGTX3) in the mussels of 1989. While, Mussels collected in 1990 contained a significantly larger proportion of neosaxitoxin $(44-50\%)$ than did those of 1989. A. tamarense isolated in April 1989 produced the same toxins in culture with slightly higher proportion of Cl, C2, dcGTX2 and dcGTX3 than in the mussels. The difference was within a range of toxin change during accumulation by shellfish and during sample preparation for analysis. It was thus concluded that the dinoflagellate was the cause of toxins in the mussels.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2021.05a
/
pp.538-540
/
2021
In this paper, we proposed a smart target detection system that detects and recognizes a designated target to provide relative motion information when performing a target detection mission of a drone. The proposed system focused on developing an algorithm that can secure adequate accuracy (i.e. mAP, IoU) and high real-time at the same time. The proposed system showed an accuracy of close to 1.0 after 100k learning of the Google Inception V2 deep learning model, and the inference speed was about 60-80[Hz] when using a high-performance laptop based on the real-time performance Nvidia GTX 2070 Max-Q. The proposed smart target detection system will be operated like a drone and will be helpful in successfully performing surveillance and reconnaissance missions by automatically recognizing the target using computer image processing and following the target.
Journal of the Korea Institute of Information and Communication Engineering
/
v.15
no.3
/
pp.583-588
/
2011
In this paper, we propose an adaptive variable-sized matching window method using the characteristic points of the image and a method to increase the reliability of the cross-consistency check to raise the correctness of the final disparity image. The proposed adaptive variable-sized window method segments the image with the color information, finds the characteristic points inside the window. Also the proposed algorithm implement using a graphic processing unit(GPU). The GPU, we used in this paper is GeForce GTX296 (NVIDIA) and we can use programming based on CUDA. The calculation speed realizes a speed approximately 128 times faster than that of a CPU.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.