• Title/Summary/Keyword: GTP cyclohydrolase l

Search Result 3, Processing Time 0.015 seconds

Analysis of Two Promoters that Control the Expression of the GTP cyclohydrolase I Gene in Drosophila melanogaster

  • Byun, Jaegoo;Yoon, Jaeseung;Baek, Kwanghee
    • Molecules and Cells
    • /
    • v.27 no.5
    • /
    • pp.583-589
    • /
    • 2009
  • GTP cyclohydrolase I (GTPCH) is a key enzyme in the de novo synthesis of tetrahydrobiopterin. Previously, the Drosophila melanogaster GTPCH gene has been shown to be expressed from two different promoters (P1 and P2). In our study, the 5'-flanking DNA regions required for P1 and P2 promoter activities were characterized using transient expression assay. The DNA regions between -98 and +31, and between -73 and +35 are required for efficient P1 and P2 promoter activities, respectively. The regions between -98 and -56 and between -73 and -41 may contain critical elements required for the expression of GTPCH in Drosophila. By aligning the nucleotide sequences in the P1 and P2 promoter regions of the Drosophila melanogaster and Drosophila virilrs GTPCH genes, several conserved elements including palindromic sequences in the regions critical for P1 and P2 promoter activities were identified. Western blot analysis of transgenic flies transformed using P1 or P2 promoter-lacZ fusion plasmids further revealed that P1 promoter expression is restricted to the late pupae and adult developmental stages but that the P2 promoter driven expression of GTPCH is constitutive throughout fly development. In addition, X-gal staining of the embryos and imaginal discs of transgenic flies suggests that the P2 promoter is active from stage 13 of embryo and is generally active in most regions of the imaginal discs at the larval stages.

Optimization of Expression Conditions Enhances Production of Sepiapterin, a Precursor for Tetrahydrobiopterin Biosynthesis, in Recombinant Escherichia coli

  • Park, Eun-Hee;Lee, Won-Heong;Jang, Mi-Hee;Kim, Myoung-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.10
    • /
    • pp.1709-1713
    • /
    • 2015
  • Sepiapterin is a precursor for the synthesis of tetrahydrobiopterin (BH4), which is a wellknown cofactor for aromatic amino acid hydroxylation and nitric oxide synthesis in higher mammals. In this study, a recombinant Escherichia coli BL21(DE3) strain harboring cyanobacterial guanosine 5’-triphosphate cyclohydrolase 1 (GCH1) and human 6-pyruvoyltetrahydropterin synthase (PTPS) genes was constructed to produce sepiapterin. The optimum conditions for T7 promoter–driven expression of GCH1 and PTPS were 30℃ and 0.1 mM isopropyl-β-D-thioglucopyranoside (IPTG). The maximum sepiapterin concentration of 88.1 ± 2.4 mg/l was obtained in a batch cultivation of the recombinant E. coli, corresponding to an 18-fold increase in sepiapterin production compared with the control condition (37℃ and 1 mM IPTG).

Engineering of Biosynthesis Pathway and NADPH Supply for Improved L-5-Methyltetrahydrofolate Production by Lactococcus lactis

  • Lu, Chuanchuan;Liu, Yanfeng;Li, Jianghua;Liu, Long;Du, Guocheng
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.1
    • /
    • pp.154-162
    • /
    • 2021
  • L-5-methyltetrahydrofolate (5-MTHF) is one of the biological active forms of folate, which is widely used as a nutraceutical. However, low yield and serious pollution associated with the chemical synthesis of 5-MTHF hampers its sustainable supply. In this study, 5-MTHF production was improved by engineering the 5-MTHF biosynthesis pathway and NADPH supply in Lactococcus lactis for developing a green and sustainable biosynthesis approach. Specifically, overexpressing the key rate-limiting enzyme methylenetetrahydrofolate reductase led to intracellular 5-MTHF accumulation, reaching 18 ㎍/l. Next, 5-MTHF synthesis was further enhanced by combinatorial overexpression of 5-MTHF synthesis pathway enzymes with methylenetetrahydrofolate reductase, resulting in 1.7-fold enhancement. The folate supply pathway was strengthened by expressing folE encoding GTP cyclohydrolase I, which increased 5-MTHF production 2.4-fold to 72 ㎍/l. Furthermore, glucose-6-phosphate dehydrogenase was overexpressed to improve the redox cofactor NADPH supply for 5-MTHF biosynthesis, which led to a 60% increase in intracellular NADPH and a 35% increase in 5-MTHF production (97 ㎍/l). To reduce formation of the by-product 5-formyltetrahydrofolate, overexpression of 5-formyltetrahydrofolate cyclo-ligase converted 5-formyltetrahydrofolate to 5,10-methyltetrahydrofolate, which enhanced the 5-MTHF titer to 132 ㎍/l. Finally, combinatorial addition of folate precursors to the fermentation medium boosted 5-MTHF production, reaching 300 ㎍/l. To the best of our knowledge, this titer is the highest achieved by L. lactis. This study lays the foundation for further engineering of L. lactis for efficient 5-MTHF biosynthesis.