• Title/Summary/Keyword: GST-p

Search Result 75, Processing Time 0.071 seconds

The Effect of Modified Constraint-induced Movement Therapy and Resistive Exercise Using Elastic Band with Pressure Belt on Affected Upper Limb Function in Stroke Patients (수정된 강제유도운동과 탄력밴드를 이용한 가압벨트 저항성 운동이 뇌졸중 환자의 상지 기능에 미치는 효과)

  • Kim, Tae-gon;Kim, Kyung-yoon;Bae, Sea-hyun
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.27 no.3
    • /
    • pp.25-36
    • /
    • 2021
  • Background: This study aimed to investigate the effect of modified constraint-induced movement therapy (mCIMT) and resistive exercise using elastic band with pressure belt on improving upper extremity function in stroke patients. Methods: Sixteen patients with stroke were randomly assigned to a control group that received mCIMT and resistive exercise using elastic band (n=8) and an experimental group that received mCIMT and resistive exercise using elastic band with pressure belt (n=8). Over the course of four weeks, mCIMT were conducted 60 minute three times per week and resistive exercise using elastic band (with pressure belt) were conducted twice daily, three times per week. The function of the upper extremities were evaluated before, after 2 weeks and 4 weeks using the grip strength test (GST), the box and block test (BBT), and motor activity log (MAL). Results: The values for the GST, the BBT, and MAL increased in both groups as the treatment period progressed. The values for the GST (p<.01), the BBT (p<.001), and MAL (p<.001) were significantly higher in the experimental group than in the control group at 4 weeks after initiating the treatment. Conclusion: We found that mCIMT and wearing a pressure belt during resistive exercise was very useful in improving the function of the upper extremities in patients with stroke.

  • PDF

Contribution of Arginine 13 to the Catalytic Activity of Human Class Pi Glutathione Transferase P1-1

  • Kong, Ji-Na;Jo, Dong-Hyeon;Do, Hyun-Dong;Lee, Jin-Ju;Kong, Kwang-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.9
    • /
    • pp.2497-2502
    • /
    • 2010
  • Arg13 is a conserved active-site residue in all known Pi class glutathione S-transferases (GSTs) and in most Alpha class GSTs. To evaluate its contribution to substrate binding and catalysis of this residue, three mutants (R13A, R13K, and R13L) were expressed in Escherichia coli and purified by GSH affinity chromatography. The substitutions of Arg13 significantly affected GSH-conjugation activity, while scarcely affecting glutathione peroxidase or steroid isomerase activities. Mutation of Arg13 into Ala largely reduced the GSH-conjugation activity by approximately 85 - 95%, whereas substitutions by Lys and Leu barely affected activity. These results suggest that, in the GSH-conjugation activity of hGST P1-1, the contribution of Arg13 toward catalytic activity is highly dependent on substrate specificities and the size of the side chain at position 13. From the kinetic parameters, introduction of larger side chains at position 13 results in stronger affinity (Leu > Lys, Arg > Ala) towards GSH. The substitutions of Arg13 with alanine and leucine significantly affected $k_{cat}$, whereas substitution with Lys was similar to that of the wild type, indicating the significance of a positively charged residue at position 13. From the plots of log ($k_{cat}/{K_m}^{CDNB}$) against pH, the $pK_a$ values of the thiol group of GSH bound in R13A, R13K, and R13L were estimated to be 1.8, 1.4, and 1.8 pK units higher than the $pK_a$ value of the wild-type enzyme, demonstrating the contribution of the Arg13 guanidinium group to the electrostatic field in the active site. From these results, we suggest that contribution of Arg13 in substrate binding is highly dependent on the nature of the electrophilic substrates, while in the catalytic mechanism, it stabilizes the GSH thiolate through hydrogen bonding.

Oxidative damage biomarker levels according to Mn-SOD and GST gene polymorphisms in preschool children (Mn-SOD와 GST 유전자 다형성에 따른 유아의 산화손상지표의 분포)

  • Shin, You-kyung;Choi, Ji-Won;Oh, Se-Young;Chung, Jayong
    • Journal of Nutrition and Health
    • /
    • v.48 no.6
    • /
    • pp.468-475
    • /
    • 2015
  • Purpose: Genetic polymorphisms in antioxidant defense and detoxification genes may modulate the levels of oxidative stress biomarkers. Methods: A total of 301 healthy preschool-aged children in the Seoul and Kyung-gi areas were recruited. DNA was extracted from blood for genotyping of manganese superoxide dismutase (Mn-SOD) Val16Ala, glutathione S-transferase (GST) P1 Ile105Val, GSTT1 present/null, and GSTM1 present/null polymorphisms by PCR-restriction fragment length polymorphism or multiplex PCR analyses. In addition to a questionnaire survey, the levels of urinary 8-hydroxyl-2-deoxiguanosine (8-OHdG) and plasma malondialdehyde (MDA) were measured by ELISA. Results: Significantly higher urinary 8-OHdG concentrations were observed in GSTP1 Ile/Val + Val/Val genotype (p = 0.030), and tended to be higher in Mn-SOD Val/Val genotype (p = 0.065). On the other hand, exposure to environmental tobacco smoking (ETS) and interaction between ETS and gene polymorphisms did not significantly influence either urinary 8-OHdG concentrations or serum MDA. Conclusion: Based on our findings, GSTP1 Ile/Val gene polymorphisms might modulate the levels of oxidative stress biomarkers in healthy preschool children.

The Comparison between FSGS and MCNS Using Proteomic Method in Childhood Nephrotic Syndrome; Preliminary Study (단백질체학을 이용하여 국소성 분절성 사구체 경화증과 미세 변화형 신증후군의 비교)

  • Kim, Sung-Do;Cho, Byoung-Soo
    • Childhood Kidney Diseases
    • /
    • v.13 no.2
    • /
    • pp.170-175
    • /
    • 2009
  • Purpose : FSGS do not respond well to any kind of therapy and gradually progress to end-stage renal disease. This study was conducted to investigate the difference of protein expression between MCNS and FSGS as a preliminary study for understanding the pathophysiology of FSGS. Methods : Renal biopsy samples of MCNS and FSGS were obtained, which was diagnosed by one pathologist. They were solubilized with a conventional extraction buffer for protein extraction. The solution was applied on immobilized linear gradient strip gel (pH 4-7) using IPGphor system. Silver staining was carried out according to standard method. Protein identification was done by searching NCBI database using MASCOT Peptide Mass Fingerprint software. Results : The differences in protein expressions between MCNS and FSGS were shown by increased or decreased protein spots. Most prominently expressed spot among several spots in FSGS was isolated and analyzed, one of which was glutathione S-transferase (GST) P1-1, whereas it was not found in MCNS. So GSTP1-1 was considered as the one of the key biomarkers in pathogenesis of FSGS. Conclusion : This result would be helpful in diagnosing FSGS and researching FSGS. Further studies for glutathione S-transferase P1-1 might be necessary to elucidate the mechanisms regarding FSGS.

Isolation of Myrosinase and Glutathione S-transferase Genes and Transformation of These Genes to Develop Phenylethylisothiocyanate Enriching Chinese Cabbage (배추에서 항암물질 phenylethylisothiocyanate의 다량 합성을 위한 myrosinase와 glutathione S-transferase 유전자 분리 및 이를 이용한 형질전환체 육성)

  • Park, Ji-Hyun;Lee, Su-Jin;Kim, Bo-Ryung;Woo, Eun-Teak;Lee, Ji-Sun;Han, Eun-Hyang;Lee, Youn-Hyung;Park, Young-Doo
    • Horticultural Science & Technology
    • /
    • v.29 no.6
    • /
    • pp.623-632
    • /
    • 2011
  • To increase the anti-carcinogens phenylethylisothiocyanate (PEITC), myrosinase (MYR), and glutathione S-transferase (GST), genes related to PEITC pathway were isolated and the gene expressions were regulated by Agrobacterium transformation. Isolated cDNAs, MYR, and GST genes were 1,647 bp and 624 bp, respectively, and the protein expression was confirmed through pET system. Thereafter, we constructed a sense-oriented over-expressing myrosinase (pBMY) and RNAi down-regulated GST (pJJGST) binary vectors for the Chinese cabbage transformation. After the transformation, thirteen over-expressing transgenic Chinese cabbage plants (IMS) with pBMY and five down-regulated ones (IGA) with pJJGST were selected by PCR analysis. Selected $T_0$ transgenic plants were generated to $T_1$ plants by self-pollination. Based on the Southern blot analysis on these $T_1$ transgenic plants, 1-4 copies of T-DNA were transferred to Chinese cabbage genome. Thereafter, RNA expression level of myrosinase gene or GST gene was analyzed through real-time RT PCR of IMS, IGA, and non-transgenic inbred lines. In case of IMS lines, myrosinase gene was increased 1.03-4.25 fold and, in IGA lines, GST gene was decreased by 26.42-42.22 fold compared to non-transgenic ones, respectively. Analysis of PEITC concentrations using GC-MS it showed that some IMS lines and some IGA lines increased concentrations of PEITC up to 4.86 fold and up to 3.89 fold respectively compared to wild type. Finally in this study IMS 1, 3, 5, 12, and 15 and IGA 1, 2, and 4 were selected as developed transgenic lines with increasing quantities of anti-carcinogen PEITC.